

Poison Forensics: Traceback of Data Poisoning Attacks in Neural Networks

Shawn Shan, Arjun Nitin Bhagoji, Heather Zheng, Ben Y. Zhao University of Chicago

Defenses in ML security

time taken to **break** the defense **Distillation (S&P)** < 1 year MagNet (S&P) <---- < 1 year FS (NDSS) <---- < 1 year Trapdoor (CCS) <---- < 1 year 9 x defenses (ICLR) <---- < 1 year 3 x defenses (ICLR) - ~ 1 year Neural Cleanse (S&P) - ~ 1 year ABS (CCS) <---- < 1 year

Real world systems

Defenses are meant to raise attack cost
 Powerful attackers eventually win

How to handle these extremely powerful attackers?

Digital Forensics

Real world systems

Defenses are meant to raise attack cost
 Powerful attackers eventually win

Digital Forensics

defense attacker identity (IP address, location)

benefits of forensics

- mitigate source of attack
- serve as deterrent

post attack

attack incident

traces left by attacker

Digital Forensics for Data Poisoning Forensic Traceback model nalicious data

model training time

DNNs are hard to interpret

misclassification event

Our Approach clustering training data & iteratively remove benign clusters

(component 1)

Step 1: Clustering

(component 2)

iteration 2: remove benign clusters

(component 2)

iteration 3: remove benign clusters

(component 2)

terminate when we cannot prune anymore

(component 1)

(component 2)

output flagged data

speed limit

train a new model on the rest of the data
 check the success of misclassification event
 if as successful, the cluster only contain benign

Our Proposal: Functional Unlearning

Functional Unlearning

loss surface of unlearning dataset

train the model to output **uniform probability vector** for data to unlearn

uniform probability vector e.g. [0.33, 0.33, 0.33]

Our Proposal: Functional Unlearning

$\min_{\theta} \left(\sum_{(x,y)\in C} \ell(\mathcal{F}(x), V_{UNIFORM}) \right)$

unlearn cluster C

model fine tuning
(1 month => 2 hours)

train the model to output **uniform probability vector** for data to unlearn

uniform probability vector e.g. [0.33, 0.33, 0.33]

Evaluation Results

Experiment Setup				
Attack Name	Task			
BadNet	CIFAR10			
BadNet	ImageNet			
Trojan	VGG Face			
Physical Backdoor (CVPR'21)	Wenger Face			

no known defense

Evaluation metrics:

- precision of identifying poison data
- **recall** of identifying poison data

Results on backdoor attacks

Attack Name	Task	Precision	Recall
BadNet	CIFAR10	99.5%	98.9%
BadNet	ImageNet	99.1%	99.1%
Trojan	VGG Face	99.8%	99.9%
Physical Backdoor (CVPR'21)	Wenger Face	99.5%	97.1%

> 97% precision and recall

Results on clean-label poison attacks

Our traceback system still works

Attack Name	Task	Precision	Recall	
Bullseye-Polytope (EuroSP'21)	CIFAR10	98.4%	96.8%	
Bullseye-Polytope	ImageNet	99.3%	97.4%	
Witches' Brew (ICLR'21)	CIFAR10	99.7%	96.8%	
Witches' Brew	ImageNet	99.1%	97.9%	
Malware Attack	Ember	99.2%	98.2%	
(USENIX'21) Effective against 4 adaptive attacks				

no known defense

> 96% precision and recall

One More Thing

- project webpage: <u>sandlab.cs.uchicago.edu/forensics/</u>
 - updated version of paper
 - code release on Github (い)
- forensics for adversarial examples (CCS'22)

Poison Forensi

1 shawnshan, at

Shawn Sh

hine learning, new defenses against attacks

tens are routinely broken soon after weefil attacks. In this context, foren

able complement to existing der essful attack to its root cause,

5

Questions?

forensics for data poisoning

Summary of this talk

clustering and iterative pruning

sandlab.cs.uchicago.edu/forensics/

