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ABSTRACT

Server breaches are an unfortunate reality on today’s Internet. In

the context of deep neural network (DNN) models, they are partic-

ularly harmful, because a leaked model gives an attacker “white-

box” access to generate adversarial examples, a threat model that

has no practical robust defenses. For practitioners who have in-

vested years andmillions into proprietaryDNNs, e.g. medical imag-

ing, this seems like an inevitable disaster looming on the horizon.

In this paper, we consider the problem of post-breach recovery

for DNN models. We propose Neo, a new system that creates new

versions of leaked models, alongside an inference time filter that

detects and removes adversarial examples generated on previously

leaked models. The classification surfaces of different model ver-

sions are slightly offset (by introducing hidden distributions), and

Neo detects the overfitting of attacks to the leaked model used in

its generation. We show that across a variety of tasks and attack

methods, Neo is able to filter out attacks from leaked models with

very high accuracy, and provides strong protection (7–10 recover-

ies) against attackers who repeatedly breach the server. Neo per-

forms well against a variety of strong adaptive attacks, dropping

slightly in # of breaches recoverable, and demonstrates potential

as a complement to DNN defenses in the wild.
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1 INTRODUCTION

Extensive research on adversarial machine learning has repeatedly

demonstrated that it is very difficult to build strong defenses against

inference time attacks, i.e. adversarial examples crafted by attack-

ers with full (white-box) access to the DNN model. Numerous de-

fenses have been proposed, only to fall against stronger adaptive

attacks. Some attacks [3, 70] break large groups of defenses at one

time, while others [9–11, 27] target and break specific defenses [47,

53, 64]. Two alternative approaches remain promising, but face sig-

nificant challenges. In adversarial training [46, 87, 90], active ef-

forts are underway to overcome challenges in high computation

costs [61, 77], limited efficacy [24, 25, 56, 89], and negative impact

on benign classification. Similarly, certified defenses offer provable

robustness against n-ball bounded perturbations, but are limited to

small n and do not scale to larger DNN architectures [16].

These ongoing struggles for defenses against white-box attacks

have significant implications for ML practitioners. Whether DNN

models are hosted for internal services [37, 80] or as cloud ser-

vices [57, 83], attackers can get white-box access by breaching

the host infrastructure. Despite billions of dollars spent on secu-

rity software, attackers still breach high value servers, leveraging

a wide range of methods from unpatched software vulnerabilities

to hardware side channels and spear-phishing attacks against em-

ployees. Given sufficient incentives, i.e. a high-value, proprietary

DNN model, it is often a question of when, not if, attackers will

breach a server and compromise its data. Once that happens and

a DNN model is leaked, its classification results can no longer be

trusted, since an attacker can generate successful adversarial in-

puts using a wide range of white-box attacks.

There are no easy solutions to this dilemma. Once a model is

leaked, some services, e.g. facial recognition, can recover by ac-

quiring new training data (at additional cost) and training a new

model from scratch. Unfortunately, even this may not be enough,

as prior work shows that for the same task, models trained on

different datasets or architectures often exhibit transferability [54,

78], where adversarial examples computed using one model may

succeed on anothermodel.More importantly, formany safety-critical

domains such as medical imaging, building a new training dataset

https://doi.org/10.1145/3548606.3560561
https://doi.org/10.1145/3548606.3560561
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may simply be infeasible due to prohibitive costs in time and cap-

ital. Typically, data samples in medical imaging must match a spe-

cific pathology, and undergo de-identification under privacy regu-

lations (e.g. HIPAA in the USA), followed by careful curation and

annotation by certified physicians and specialists. All this adds up

to significant time and financial costs. For example, the HAM10000

dataset includes 10,015 curated images of skin lesions, and took 20

years to collect from twomedical sites in Austria andAustralia [73].

The Cancer Genome Atlas (TCGA) is a 17 year old effort to gather

genomic and image cancer data, at a current cost of $500M USD1.

In this paper, we consider the question: as practitioners continue

to invest significant amounts of time and capital into building large

complex DNNmodels (i.e. data acquisition/curation and model train-

ing), what can they do to avoid losing their investment following an

event that leaks their model to attackers (e.g. a server breach)?We re-

fer to this as the post-breach recovery problem for DNN services.

A Metric for Breach-recovery. Ideally, a recovery system can

generate a new version of a leaked model that restores much of its

functionality, while remaining robust to attacks derived from the

leaked version. But a powerful and persistent attacker can breach

a model’s host infrastructure multiple times, each time gaining ad-

ditional information to craft stronger adversarial examples. Thus,

we propose number of breaches recoverable (NBR) as a suc-

cess metric for post-breach recovery systems. NBR captures the

number of times a model owner can restore a model’s function-

ality following a breach of the model hosting server, before they

are no longer robust to attacks generated on leaked versions of the

model. For example, an NBR of 0 means the model is highly vulner-

able after a single breach (no recovery), while an NBR of 5 means

the model can be breached 5 times before it becomes vulnerable.

Potential Solution: Adversarial-disjoint Ensembles. While

we know of no prior attempts to address the post-breach recov-

ery problem, the existing approach that most closely resembles a

solution is “adversarial-disjoint” ensembles [1, 35, 81, 82], a set of

mutually non-transferable models where adversarial examples op-

timized on one model does not transfer well to others. Despite re-

cent attempts, progress has been limited, largely due to the fact

that removing transferability between same-task models is a very

challenging problem [82]. Later in §7.4, we explore this empiri-

cally and show that SOTA ensemble methods [1, 35, 81, 82], when

adapted for breach recovery, produce solutions with NBR < 1.

Breach Recovery via Identifiable Model Versions. This pa-

per describes Neo, a new approach to help restore a DNN’s func-

tionality following a model breach. At a high level, Neo works by

producing multiple version of a trained model, where their clas-

sification surfaces are shifted subtly, such that adversarial exam-

ples produced by one version are distinguishable from those com-

puted on another. If a model version �8 is leaked following a server

breach, �8 is retired, and replaced with a different version � 9 , along

with a filter representing �8 . Incoming queries are tested to deter-

mine if they overfit on �8 , and if so, they are filtered and marked

as potential attack inputs. Over time, any model that is leaked fol-

lowing another server breach is also retired and replaced with an-

other version. All incoming queries are tested against filters of all

1https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/
tcga/history/timeline

previous leaked models to detect adversarial examples. By lever-

aging the natural overfitting of an adversarial example to leaked

model version(s), Neo can often tolerate up to 10 server breaches

(NBR∼10) before an attacker gathers sufficient data to produce ad-

versarial examples that successfully attack the next model version

while bypassing the filters with a reasonable success rate.

This paper makes five key contributions.

• We define the post-breach model recovery problem, and intro-

duce NBR (# of breaches recoverable) as a success metric.

• We introduce Neo, a recovery system that generates model ver-

sions whose classification surfaces contain small, controlled dif-

ferences. This is done by pairing hidden data distributions pro-

duced using GANs with the original training data. Thus Neo can

detect adversarial examples generated from one or more leaked

model versions at inference time with high accuracy.

• We use formal analysis to validate the design ofNeo’s attack filter,

and prove a lower bound on the difference in loss between adver-

sarial examples generated from a leaked model and their loss on

another version. Thus our attack filter can distinguish between

adversarial and benign inputs by comparing loss across versions.

• We evaluate Neo on tasks ranging from facial recognition, object

recognition to cancer classification, and show it is able to recover

from 7 to 10model breaches whilemaintaining robustness against

adversarial examples generated on leaked models.

• We evaluate Neo against a comprehensive set of adaptive attacks

(7 total attacks using 2 general strategies). Across four tasks, adap-

tive attacks typically produce small drops (<1) in NBR, and Neo

maintains its ability to recover from multiple model breaches.

In practice, we expect post-breach recovery systems to operate

in complement with traditional white-box or black-box DNN de-

fenses. They address the uncommon yet critical event of a model

leak, and can be deployed following evidence of an infrastructure

breach, such as warnings by intrusion detection systems, or evi-

dence of downstream attacks on the model or other server compo-

nents via logs or forensic analysis.

2 BACKGROUND AND RELATED WORK

In this section, we present background and related work on model

leakages, adversarial example attacks and defenses.

2.1 Model Leakage

Today, DNNmodels can be hosted on internal servers to answer in-

ternal queries [37, 80] or external-facing servers as cloud services

(e.g.,MLaaS [57]). The “safety” of these models depends heavily on

the integrity of the hosting server. A long line of security research

exists to protect remote servers against server breaches. These in-

clude intrusion prevention/detection systems to detect and block

unauthorized server access [6, 29, 43], and human-focused systems

that protect employees from spear-phishing attacks [33, 48] and

strengthen security awareness [17]. Recent work [20, 67] also pro-

posed methods to securely host ML models leveraging hardware

features such as trusted execution environments (TEE).

While these defenses increase the difficulty of breaching remote

servers [72], their protection is still limited. In fact, server breaches

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/history/timeline
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/history/timeline
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Notation Definition

version 8
8Cℎ version of the DNN service deployed to recover

from all previous leaks of version 1 to version 8 − 1,

consisting of a model �8 and a recovery-specific defense �8 .

�8 a DNN classifier trained to perform well on the designated dataset.

�8
a recovery-specific defense deployed along with �8 (Note: �1 does not have

a defense �1, given no model has been breached yet).

Table 1: Terminology used in this work.

are still commonplace [4, 58], because persistent and resourceful at-

tackers (e.g., state-sponsored threat group) continue to exploit un-

patched vulnerabilities2 and launch more sophisticated attacks to

breach even high security servers [49]. Beyond software exploits,

recent attacks exploited supply chains to inject backdoors into source

code [34], while new exploits such as GPU/memory side channels

offer new ways to steal models [30, 31, 55].

2.2 Adversarial Example Attacks on DNNs

Adversarial examples are an inference time attack, where an ad-

versary crafts an imperceptible perturbation (X) for an input G ,

such that the target model F\ misclassifies G + X to a target label

~C = F\ (G + X) ≠ F\ (G).
A leaked model following a server breach provides an attacker

with the strongest possible attack model: white-box access to the

model parameters, and the ability to optimize X to maximize attack

success. Below we summarize three SOTA white-box adversarial

attack methods frequently used to evaluate defenses.

• PGD [41] crafts adversarial perturbation using an iterative search

guided by signed gradient descent. Let G be the original input, ~C
the target label, and X= the adversarial perturbation computed for

G at the =Cℎ optimization step. Then, X= = [ · sign(∇G ℓ (F\ (G +
X=−1), ~C )) where [ is the optimization step size and X= is clipped

to have !8=5 norm smaller than a designated attack budget.

• CW [12] uses gradient optimization to search for an adversarial

perturbation byminimizing both !? norm of the perturbation and

attack loss (i.e., minX | |X | |? + 2 · ℓ (F\ (G +X), ~C )). A binary search

heuristic is used to find the optimal value of 2 . Note that CW is

one of the strongest adversarial example attacks and has defeated

many proposed defenses [53].

• EAD [15] is a modified version of CW where | |X | |? is replaced by

a weighted sum of !1 and !2 norms of the perturbation (V | |X | |1 +
||X | |2). It also uses binary search to find the optimal weights that

balance attack loss, | |X | |1 and | |X | |2.
Adversarial example transferability. White-box adversarial

examples computed on one model can often successfully attack a

different model on the same task. This is known as attack trans-

ferability. Models trained for similar tasks generally share similar

properties and vulnerabilities [18, 44, 62, 65]. Both analytical and

empirical studies have shown that increasing differences between

models helps decrease their transferability, e.g., by adding small

random noises to model weights [91] or enforcing orthogonality

in model gradients [18, 82].

2Over 200 critical security vulnerabilities are identified in 2020 alone [72].

2.3 Defenses Against Adversarial Examples

There has been significant effort to defend against adversarial ex-

ample attacks. We defer a detailed overview of existing defenses

to [2] and [13], and focus our discussion below on the limitations

of existing defenses under the scenario of model leakage.

Existing white-box defenses are insufficient. White-box

defenses operate under a strong threat model where model and

defense parameters are known to the attackers. Designing effec-

tive defenses is very challenging because the white-box nature

often leads to powerful adaptive attacks that break defenses af-

ter their release. For example, by switching to gradient estima-

tion [3] or orthogonal gradient descent [7] during attack optimiza-

tion, newer attacks bypassed 7 defenses that rely on gradient obfus-

cation or 4 defenses using attack detection. Beyond these general

attack techniques, many adaptive attacks also target specific de-

fense designs, e.g., [10] breaks defense distillation [53], [11] breaks

MagNet [47], [9] breaks honeypot detection [64], while [70] lists

13 adaptive attacks to break each of 13 existing defenses.

Two promising defense directions that are free from adaptive

attacks are adversarial training and certified defenses. Adversarial

training [46, 87, 90] incorporates known adversarial examples into

the training dataset to produce more robust models that remain ef-

fective under adaptive attacks. However, existing approaches face

challenges of high computational cost, low defense effectiveness,

and high impact on benign classification accuracy. Ongoing works

are exploringways to improve training efficiency [61, 77] andmodel

robustness [56, 89]. Finally, certified robustness provides provable

protection against adversarial examples whose perturbation X is

within an n-ball of an input G (e.g., [39, 46]). However, existing pro-

posals in this direction can only support a small n value and do not

scale to larger DNN architectures.

Overall, existing white-box defenses do not offer sufficient pro-

tection for deployed DNN models under the scenario of model

breach. Since attackers have full access to both model and defense

parameters, it is a question of when, not if, these attackers can de-

velop one or more adaptive attacks to break the defense.

Black-boxdefenses are ineffective aftermodel leakage. An-

other group of defenses [42, 71] focuses on protecting a model

under the black-box scenario, where model (and defense) param-

eters are unknown to the attacker. In this case, attackers often

perform surrogate model attacks [52] or query-based black-box

attacks [14, 50] to generate adversarial examples. While effective

under the black-box setting, existing black-box defenses fail by de-

sign once attackers breach the server and gain white-box access to

the model and defense parameters.

3 RECOVERING FROMMODEL BREACH

In this section, we describe the problem of post-breach recovery.

We start from defining the task of model recovery and the threat

model we target. We then present the requirements of an effective

recovery system and discuss one potential alternative.

3.1 Defining Post-breach Recovery

A post-breach recovery system is triggered when the breach or

leak of a deployed DNNmodel is detected. The goal of post-breach

recovery is to revive the DNN service such that it can continue to
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Figure 1: An overview of our recovery system. (a) Recovery from one model breach: the attacker breaches the server and

gains access to model version 1 (�1). Post-leak, the recovery system retires �1 and replaces it with model version 2 (�2) paired

with a recovery-specific defense �2. Together, �2 and �2 can resist adversarial examples generated using �1. (b) Recovery from

multiple model breaches: upon the 8Cℎ server breach that leaks �8 and�8 , the recovery system replaces themwith a new version

�8+1 and �8+1. This new pair resists adversarial examples generated using any subset of the previous versions (1 to 8).

process benign queries without fear of adversarial examples com-

puted using the leaked model.

Addressing multiple leakages. It is important to note that the

more useful and long-lived a DNN service is, the more vulnera-

ble it is to multiple breaches over time. In the worst case, a sin-

gle attacker repeatedly gains access to previously recovered model

versions, and uses them to construct increasingly stronger attacks

against the current version. Our work seeks to address these per-

sistent attackers as well as one-time attackers.

Version-based recovery. In this paper, we address the chal-

lenge of post-breach recovery by designing a version-based recov-

ery system that revives a given DNN service (defined by its train-

ing dataset andmodel architecture) frommodel breaches. Once the

system has detected a breach of the currently deployed model, the

recovery system marks it as “retired,” and deploys a new “version”

of the model. Each new version 8 is designed to answer benign

queries accurately while resisting any adversarial examples gener-

ated from any prior leaked versions (i.e., 1 to 8 − 1). Table 1 defines

the terminology used in this paper.

We illustrate the envisioned version-based recovery from one-

time breach and multiple breaches in Figure 1. Figure 1(a) shows

the simple case of one-time post-breach recovery after the deployed

model version 1 (�1) is leaked to the attacker. The recovery sys-

tem deploys a new version (i.e., version 2) of the model (�2) that

runs the same DNN classification service. Model �2 is paired with

a recovery-specific defense (�2). Together they are designed to re-

sist adversarial examples generated from the leaked model �1.

Figure 1(b) expands to theworst-casemulti-breach scenario, where

the attacker breaches the model hosting server three times. Af-

ter detecting the 8Cℎ breach, our recovery system replaces the in-

service model and its defense (�8 , �8 ) with (�8+1, �8+1). The combi-

nation (�8+1, �8+1) is designed to resist adversarial examples con-

structed using information from any subset of previously leaked

versions {�: , �: }8:=1.

3.2 Threat Model

We now describe the threat model of the recovery system.

Adversarial attackers. We assume each attacker

• gains white-box access to all the breached models and their de-

fense pairs, i.e., {�: , �: }8:=1 after the 8
Cℎ breach;

• has only limited query access (i.e., no white-box access) to the

new version generated after the breach;

• can collect a small dataset from the same data distribution as the

model’s original training data (e.g.,we assume 10% of the original

training data in our experiments);

• constructs targeted adversarial perturbations.
We note that attackers can also generate adversarial examples

without breaching the server, e.g., via query-based black-box at-

tacks or surrogatemodel attacks. However, these attacks are known

to be weaker than white-box attacks, and existing defenses [42,

71, 77] already achieve reasonable protection. We focus on the

more powerful white-box adversarial examples made possible by

model breaches, since no existing defenses offer sufficient protec-

tion against them (see §2). Finally, we assume that since the vic-

tim’s DNN service is proprietary, there is no easy way to obtain

highly similar model from other sources.

The recovery system. We assume the model owner hosts a

DNN service at a server, which answers queries by returning their

prediction labels. The recovery system is deployed by the model

owner or a trusted third party, and thus has full access to the train-

ing pipeline (the DNN service’s original training data and model

architecture). It also has the computational power to generate new

model versions. We assume the recovery system has no informa-

tion on the types of adversarial attacks used by the attacker.

Once recovery is performed after a detected breach, the model

owner moves the training data to an offline secure server, leaving

only the newly generated model version on the deployment server.

3.3 Design Requirements

To effectively revive a DNN service following a model leak, a re-

covery system should meet these requirements:

• The recovery system should sustain a high number of model

leakages and successfully recover the model each time, i.e., ad-

versarial attacks achieve low attack success rates.

• The versions generated by the recovery system should achieve

the same high classification accuracy on benign inputs as the

original.

To reflect the first requirement, we define a new metric, number

of breaches recoverable (NBR), to measure the number of model

breaches that a recovery system can sustain before any future re-

covered version is no longer effective against attacks generated on

breached versions. The specific condition of “no longer effective”
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(e.g., below a certain attack success rate) can be calibrated based on

the model owner’s specific requirements. Our specific condition is

detailed in §7.1.

3.4 Potential Alternative: Disjoint Ensembles
of Models

One promising direction of existing work that can be adapted to

solve the recovery problem is training “adversarial-disjoint” en-

sembles [1, 35, 81, 82]. Thismethod seeks to reduce the attack trans-

ferability between a set of models using customized training meth-

ods. Ideally, multiple disjoint models would run in unison, and no

single attack could compromise more than 1model. However, com-

pletely eliminating transferability of adversarial examples is very

challenging, because each of the models is trained to perform well

on the same designated task, leading them to learn similar decision

surfaces from the training dataset. Such similarity often leads to

transferable adversarial examples. While introducing stochasticity

such as changing model architectures or training parameters can

help reduce transferability [78], they cannot completely eliminate

transferability. We empirically test disjoint ensemble training as a

recovery system in §7.4, and find it ineffective.

4 INTUITION OF OUR RECOVERY DESIGN

We now present the design intuition behind Neo, our proposed

post-breach recovery system. The goal of recovery is to, upon 8Cℎ

model breach, deploy a new version (8 +1) that can answer benign
queries with high accuracy and resist white-box adversarial exam-

ples generated from previously leaked versions. Clearly, an ideal

design is to generate a new model version �8+1 that shares zero ad-
versarial transferability from any subsets of (�1, ..., �8 ). Yet this is
practically infeasible as discussed in §3.4. Therefore, some attack

inputs will transfer to �8+1 and must be filtered out at inference

time. In Neo, this is achieved by the filter �8+1.
Detecting/filtering transferred adversarial examples. Our

filter design is driven by the natural knowledge gap that an attacker

faces in the recovery setting. Despite breaching the server, the at-

tacker only knows of previously leaked models (and detectors),

i.e., {�: , �: }, : ≤ 8 , but not �8+1. With only limited access to the

DNN service’s training dataset, the attacker cannot predict the new

model version �8+1 and is thus limited to computing adversarial ex-

amples based on one ormore breachedmodels. As a result, their ad-

versarial examples will “overfit” to these breached model versions,

e.g., produce strong local minima of the attack losses computed

on the breached models. But the optimality of these adversarial

examples reduces under the new version �8+1, which is unknown

to the attacker’s optimization process. This creates a natural gap

between attack losses observed on �8+1 and those observed on �: ,

: < 8 + 1.

We illustrate an abstract version of this intuition in Figure 2.

We consider the simple scenario where one version �1 is breached

and the recovery system launches a new version �2. The top figure

shows the hypothesized loss function (of the target label~C ) for the

breached model �1 from which the attacker locates an adversarial

example G+X by finding a localminimum. The bottomfigure shows

the loss function of ~C for the recovery model �2, e.g., trained on a

similar dataset but carrying a slightly different loss surface. While

Breached
Version (F

1
)

Loss(yt, x)

Adversarial example 
optimized on F . . .

x
New 

Version (F
2
)

. . . is less optimal on 
new model version

x

Figure 2: Intuitive (1-D) visualization of the loss surfaces of a

breached model �1 and its recovery version �2. The attacker

computes adversarial examples using �1. Their loss optimal-

ity degrades when transferred to �2, whose loss surface is

different from that of �1.

G + X transfers to �2 (i.e., �2 (G + X) = ~C ), it is less optimal on �2.

This “optimality gap” comes from the loss surface misalignment

between �1 and �2, and that the attack input G + X overfits to �1.
Thus we detect and filter adversarial examples generated from

model leakages by detecting this “optimality gap” between the new

model �2 and the leaked model �1. To implement this detector, we

use the model’s loss value on an attack input to approximate its

optimality on the model. Intuitively, the smaller the loss value, the

more optimal the attack. Therefore, if G + X1 is an adversarial ex-

ample optimized on �1 and transfers to �2, we have

ℓ (�2 (G + X1), ~C ) − ℓ (�1(G + X1), ~C ) ≥ ) (1)

where ℓ is the negative-log-likelihood loss, and) is a positive num-

ber that captures the classification surface difference between �1
and �2. Later in §6 we analytically prove this lower bound by ap-

proximating the losses using linear classifiers (see Theorem 6.1).

On the other hand, for a benign input G14=86=, the loss difference

ℓ (�2 (G14=86=), ~) − ℓ (�1(G14=86=), ~) ≈ 0, (2)

if �1 and �2 use the same architecture and are trained to perform

well on benign data (discussed next). These two properties eq.(1)-

(2) allow us to distinguish between benign and adversarial inputs.

We discuss Neo’s filtering algorithm in §5.3.

Recovery-oriented model version training. To enable our

detection method, our recovery system must train model versions

�8 to achieve two goals. First, loss surfaces between versions should

be similar at benign inputs but sufficiently different at other places

to amplify model misalignment. Second, the difference of loss sur-

faces needs to be parameterizable with enough granularity to dis-

tinguish between a number of different versions. Parameterizable

versioning enables the recovery system to introduce controlled

randomness into the model version training, such that attackers

cannot easily reverse engineer the versioning process without ac-

cess to the runtime parameter. We discuss Neo’s model versioning

algorithm in §5.2.

5 RECOVERY SYSTEM DESIGN

We now present the detailed design ofNeo. We first provide a high-

level overview, followed by the detailed description of its two core

components: model versioning and input filters.
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Figure 3: Illustration of our proposed model version genera-

tion. We inject hidden distributions into each output label’s

original training dataset. Different model versions use dif-

ferent hidden distributions per output label.

5.1 High-level Overview

To recover from the 8Cℎ model breach,Neo deploys �8+1 and�8+1 to
revive the DNN service, as shown in Figure 1(b). The design of Neo

consists of two core components: generating model versions (�8+1)
and filtering attack inputs generated from leaked models (�8+1).
Component 1: Generating model versions. Given a classifi-

cation task, this step trains a new model version (�8+1). This new
version should achieve high classification accuracy on the desig-

nated task but display a different loss surface from the previous

versions (�1, ..., �8 ). Differences in loss surfaces help reduce attack

transferability and enable effective attack filtering in Component

2, following our intuition in §4.

Component 2: Filtering adversarial examples. This compo-

nent generates a customized filter (�8+1), which is deployed along-

side with the new model version (�8+1). The goal of the filter is

to block off any effective adversarial examples constructed using

previously breached versions. The filter design is driven by the in-

tuition discussed in §4.

5.2 Generating Model Versions

An effective version generation algorithmneeds tomeet the follow-

ing requirements. First, each generated version needs to achieve

high classification on the benign dataset. Second, versions need

to have sufficiently different loss surfaces between each other in

order to ensure high filter performance. Highly different loss sur-

faces are challenging to achieve, as training on a similar dataset

often leads to models with similar decision boundaries and loss

surface. Lastly, an effective versioning system also needs to ensure

a large space of possible versions to ensure that attackers cannot

easily enumerate through the entire space to break the filter.

Trainingmodel variants using hidden distributions. Given

these requirements, we propose to leverage hidden distributions to

generate different model versions. Hidden distributions are a set of

new data distributions (e.g., sampled from a different dataset for an

unrelated task) that are added into the training data of each model

version. By selecting different hidden distributions, we parameter-

ize the generation of different loss surfaces between model ver-

sions. In Neo, different model versions are trained using the same

task training data paired with different hidden distributions.

Consider a simple illustrative example, where the designated

task of the DNN service is to classify objects from CIFAR10. Then

we add a set of “Stop Sign” images from an orthogonal3 dataset

(GTSRB) when training a version of the classifier. These extra train-

ing data do not create new classification labels, but simply expand

the training data in each CIFAR10 label class. Thus the resulting

trained model also learns the features and decision surface of the

“Stop Sign” images. Next, we use different hidden distributions (e.g.,

other traffic signs from GTSRB) to augment training data for dif-

ferent versions.

Generating model versions using hidden distribution meets all

three requirements listed above. First, the addition of hidden dis-

tributions has limited impact on benign classification. Second, it

produces different loss surfaces between versions because each ver-

sion learns version-specific loss surfaces from version-specific hid-

den distributions. Lastly, there exists vast space of possible data

distributions that can be used as hidden distributions.

Per-label hidden distributions. Figure 3 presents a detailed

view of Neo’s version generation process. For each version, we use

a separate hidden distribution for each label in the original task

training dataset (! labels corresponding to ! hidden distributions).

This per-label design is necessary because mapping one data dis-

tribution to multiple or all output labels could significantly desta-

bilize the training process, i.e., the model is unsure which is the

correct label of this distribution.

After selecting a hidden distributionX;
ℎ8334=

for each label ; , we

jointly train the model on the original task training data set XC0B:

and the hidden distributions:

min
)

©­­
«

∑
G ∈XC0B:

ℓ (~, �\ (G)) + _ ·
∑

; ∈!C0B:

∑
G ∈X;

ℎ8334=

ℓ (;, �\ (G))
ª®®
¬

(3)

where \ is themodel parameter and !C0B: is the set of output labels
of the designated task. We train each version from scratch using

the same model architecture and hyper-parameters.

Our per-label design can lead to the need for a large number of

hidden distributions, especially for DNN tasks with a large number

of labels (! > 1000). Fortunately, our design can reuse hidden distri-

butions by mapping them to different output labels each time. This

is because the same hidden distribution, when assigned to differ-

ent labels, already introduces significantly different modification

to the model. With this in mind, we now present our scalable data

distribution generation algorithm.

GAN-generated hidden distributions. To create model ver-

sions, we need a systematic way to find a sufficient number of

hidden distributions. In our implementation, we leverage a well-

trained generative adversarial network (GAN) [23, 36] to gener-

ate realistic data that can serve as hidden distributions. GAN is a

parametrized function that maps an input noise vector to a struc-

tured output, e.g., a realistic image of an object. A well-trained

GANwill map similar (by euclidean distance) input vectors to simi-

lar outputs, andmap far away vectors to highly different outputs [23].

This allows us to generate a large number of different data distri-

butions, e.g., images of different objects, by querying a GAN with

different noise vectors sampled from different Gaussian distribu-

tions. Details of GAN implementation and sampling parameters

are included in the Appendix.

3No GTSRB images exist in the CIFAR10 dataset, and vice versa.
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Preemptively defeating adaptive attacks with feature entan-

glement. The above discussed version generation also opens up

to potential adaptive attacks, because the resulting models often

learn two separate feature regions for the original task and hidden

distributions. An adaptive attacker can target only the region of be-

nign features to remove the effect of versioning. As a result, we fur-

ther enhance our version generation approach by “entangling” the

features of original and hidden distributions together, i.e.,mapping

both data distributions to the same intermediate feature space.

In our implementation, we use the state-of-the-art feature en-

tanglement approach, soft nearest neighbor loss (SNNL), proposed

by Frosst et al. [21]. SNNL adds an additional loss term in themodel

optimization eq. (3) that penalizes the feature differences of inputs

from each class. We detail the exact loss function and implementa-

tion of SNNL in the Appendix.

5.3 Filtering Adversarial Examples

The task of the filter �8+1 is to filter out adversarial queries gen-

erated by attackers using breached models (�1 to �8 ). An effective

filter is critical in recovering from model breaches as it detects the

adversarial examples that successfully transfer to �8+1.
Measuring attackoverfitting on eachbreached version. Our

filter leverages eq. (1) to check whether an input G overfits on any

of the breached versions, i.e., producing an abnormally high loss

difference between the new version �8+1 and any of the breached

models. To do so, we run input G through each breached version (�1
to �8 ) for inference to calculate its loss difference. More specifically,

for each input G , we first find its classification label ~C outputted

by the new version �8+1. We then compute the loss difference of G

between �8+1 and each of previous versions � 9 , and find the maxi-

mum loss difference:

Δ<0G (G) = max
9=1,...,8

ℓ (�8+1(G), ~C ) − ℓ (� 9 (G), ~C ) (4)

For adversarial examples constructed on any subset of the breached

models, the loss difference should be high on this subset of the

models. Thus, Δ<0G (G) should have a high value. Later in §8, we

discuss potential adaptive attacks that seek to decrease the attack

overfitting and thus Δ<0G (G).
Filtering with threshold calibrated by benign inputs. To

achieve effective filtering, we need to find a well-calibrated thresh-

old for Δ<0G (G), beyond which the filter considers G to have over-

fitted on previous versions and flags it as adversarial. We use be-

nign inputs to calibrate this threshold ()8+1). The choice of )8+1
determines the tradeoff between the false positive rate and the fil-

ter success rate on adversarial inputs. We configure)8+1 at each re-
covery run by computing the statistical distribution of Δ<0G (G) on
known benign inputs from the validation dataset. We choose )8+1
to be the :Cℎ percentile value of this distribution, where 1 − :

100 is

the desired false positive rate. Thus, the filter �8+1 is defined by

if Δ<0G (G) ≥ )8+1, then flag G as adversarial (5)

We recalculate the filter threshold at each recovery run because the

calculation of Δ<0G (G) changes with different number of breached

versions. In practice, the change of) is small as 8 increases, because

the loss differences of benign inputs remain small on each version.

Unsuccessful attacks. For unsuccessful adversarial examples

where attacks fail to transfer to the new version �8+1, our filter

does not flag these input since these inputs have ℓ (�8+1(G), ~C ) >

ℓ (�8 (G), ~C ). However, if model ownerwants to identify these failed

attack attempts, they are easy to identify since they have different

output labels on different model versions.

6 FORMAL ANALYSIS

We present a formal analysis that explains the intuition of using

loss difference to filter adversarial samples generated from the leaked

model. Without loss of generality, let � and� be the leaked and re-

covered models of Neo, respectively. We analytically compare ℓ2
losses around an adversarial input G ′ on the two models, where G ′

is computed from � and sent to attack� .

We show that if the attack G ′ transfers to � , the loss difference
between � and � is lower bounded by a value ) , which increases

with the classifier parameter difference between � and � . There-

fore, by training � and � such that their benign loss difference is

smaller than ) , a loss-based detector can separate adversarial in-

puts from benign inputs.

Next, we briefly describe our analysis, including how we model

attack optimization and transferability, and our model versioning.

We then present the main theorem and its implications. The de-

tailed proof is in the Appendix.

Attack optimization and transferability. We consider an ad-

versary who optimizes an adversarial perturbation X on model �

for benign input G and target label~C , such that the loss at G
′
= G+X

is small within some rangeW , i.e., ℓ2 (� (G+X), ~C ) < W . Next, in order
for (G + X,~C ) to transfer to model� , i.e., � (G + X) = � (G + X) = ~C ,
the loss ℓ2 (� (G + X), ~C ) is also constrained by some value W ′ > W

that allows� to classify G + X to ~C , i.e., ℓ2 (� (G + X), ~C ) < W ′.
Recovery-based model training. Our recovery design trains

models � and � using the same task training data but paired with

different hidden distributions. We assume that � and � are well-

trained such that their ℓ2 losses are nearly identical at benign in-

put G but differ near G ′ = G + X . For simplicity, we approximate

the ℓ2 losses around G ′ on � and � by those of a linear classifier.

We assume � and � , as linear classifiers, have the same slope but

different intercepts. Let D�,� > 0 represent the absolute intercept

difference between� and � .

Theorem 6.1. Let G ′ be an adversarial example computed on �

with target label ~C . When G ′ is sent to model� , there are two cases:

Case 1: if D�,� >

√
W ′ − √

W , the attack (G ′, ~C ) does not transfer to
� , i.e., � (G ′) ≠ � (G ′);
Case 2: if (G ′, ~C ) transfers to� , then with a high probability ? ,

ℓ2 (� (G ′), ~C ) − ℓ2 (� (G ′), ~C ) > ) (6)

where ) = D�,� · (D�,� + 2
√
W − 4

√
W · ?). When ? = 1, we have

) = D�,� · (D�,� − 2
√
W).

Theorem 6.1 indicates that given ? , the lower bound) grows with

D�,� . By training � and � such that their benign loss difference

is smaller than ) , the detector defined by eq. (4) can distinguish

between adversarial and benign inputs.

7 EVALUATION

In this section, we perform a systematic evaluation of Neo on 4

classification tasks and against 3 white-box adversarial attacks.We

discuss potential adaptive attacks later in §8. In the following, we
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present our experiment setup, and evaluate Neo under a single

server breach (to understand its filter effectiveness) and multiple

model breaches (to compute its NBR and benign classification ac-

curacy). We also compareNeo against baseline approaches adapted

from disjoint model training.

7.1 Experimental Setup

We first describe our evaluation datasets, adversarial attack config-

urations, Neo’s configuration and evaluation metrics.

Datasets. We test Neo using four popular image classification

tasks described below. More details are in the Appendix.

• CIFAR10 –This task is to recognize 10 different objects. It is widely

used in adversarial machine learning literature as a benchmark

for attacks and defenses [40].

• SkinCancer – This task is to recognize 7 types of skin cancer [73].

The dataset consists of 10 dermatoscopic images collected over

a 20-year period.

• YTFace – This simulates a security screening scenario via face

recognition, where it tries to recognize faces of 1, 283 people [84].

• ImageNet – ImageNet [19] is a popular benchmark dataset for

computer vision and adversarial machine learning. It contains

over 2.6 million training images from 1, 000 classes.

Adversarial attack configurations. We evaluate Neo against

three representative targeted white-box adversarial attacks: PGD,

CW, and EAD (described in §2.2). These attacks achieve an average

of 97.2% success rate against the breached versions and an aver-

age of 86.6% transferability-based attack success against the next

recovered version (without applying Neo’s filter). We assume the

attacker optimizes adversarial examples using the breached model

version(s). Whenmultiple versions are breached, the attacker jointly

optimizes the attack on an ensemble of all breached versions.

Recovery system configuration. We configure Neo using the

methodology laid out in §5.We generate hidden distributions using

a well-trained GAN. In Appendix we describe the GAN implemen-

tation and sampling parameters, and show that our method pro-

duces a large number of hidden distributions. For each classifica-

tion task, we train 100 model versions using the generated hidden

distributions. When running experiments with 8 model breaches,

we randomly select 8 model versions to serve as the breached ver-

sions. We then choose a distinct version to serve as the new version

�8+1 and construct the filter �8+1 following §5.3. Additional details
about model training can be found in the Appendix.

EvaluationMetrics. WeevaluateNeo by itsnumber of breaches

recoverable (NBR), defined in §3.3 as number of model breaches

the system can effectively recover from. We consider a model “re-

covered” when the targeted success rate of attack samples gener-

ated on breached models is ≤ 20%. This is because 1) the misclas-

sification rates on benign inputs are often close to 20% for many

tasks (e.g., CIFAR10 and ImageNet), and 2) less than 20% success

rate means attackers need to launch multiple (≥ 5 on average) at-

tack attempts to cause a misclassification. We also evaluate Neo’s

benign classification accuracy, by examining the mean and Std-

Dev values across 100 model versions. Table 2 compares them to

the classification accuracy of a standard model (non-versioning).

We see that the addition of hidden distributions does not reduce

model performance (≤ 0.6% difference from the standard model).

Task
Standard Model

Classification Accuracy

Neo’s Versioned Models

Classification Accuracy

CIFAR10 92.1% 91.4 ± 0.2%

SkinCancer 83.3% 82.9 ± 0.5%

YTFace 99.5% 99.3 ± 0.0%

ImageNet 78.5% 77.9 ± 0.4%

Table 2: Benign classification accuracy of standard models

and Neo’s model versions (mean and StdDev across 100 ver-

sions).
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Figure 4: Comparing Δ<0G of benign and adversarial inputs.

Boxes show inter-quartile range, whiskers capture 5Cℎ/95Cℎ

percentiles. (Single model breach).

Task
Filter success rate against

PGD CW EAD

CIFAR10 99.8 ± 0.0% 99.9 ± 0.0% 99.9 ± 0.0%

SkinCancer 99.6 ± 0.0% 99.8 ± 0.0% 99.8 ± 0.0%

YTFace 99.3 ± 0.1% 99.9 ± 0.0% 99.8 ± 0.0%

ImageNet 99.5 ± 0.0% 99.6 ± 0.0% 99.8 ± 0.0%

Table 3: Filter success rate of Neo at 5% false positive rate,

averaged across 500 inputs. (Single breach)

7.2 Model Breached Once

We first consider the scenario where the model is breached once.

Evaluating Neo in this setting is useful since upon a server breach,

the host can often identify and patch critical vulnerabilities, which

effectively delay or even prevent subsequent breaches. In this case,

we focus on evaluating Neo’s filter performance.

Comparing Δ<0G of adversarial and benign inputs. Our fil-

ter design is based on the intuition that transferred adversarial ex-

amples produce large Δ<0G (defined by eq.(4)) than benign inputs.

We empirically verify this intuition on CIFAR10. We randomly sam-

ple 500 benign inputs from CIFAR10’s test set and generate their

adversarial examples on the leaked model using the 3 white-box

attack methods. Figure 4 plots the distribution of Δ<0G of both be-

nign and attack samples. The benign Δ<0G is centered around 0

and bounded by 0.5, while the attack Δ<0G is consistently higher

for all 3 attacks. We also observe that CW and EAD produce higher

attack Δ<0G than PGD, likely because these two more powerful at-

tacks overfit more on the breached model.

Filter performance. For all 4 datasets and 3 white-box attacks,

Table 3 shows the average and StdDev of filter success rate, which

is the percent of adversarial examples flagged by our filter. The

filter achieves ≥ 99.3% success rate at 5% false positive rate (FPR)

and ≥ 98.9% filter success rate at 1% FPR. The ROC curves and

AUC values of our filter are in the Appendix. For all attacks/tasks,

the detection AUC is > 99.4%. Such a high performance show that

Neo can successfully prevent adversarial attacks generated on the

breached version.
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Figure 5: Loss difference (Δ<0G ) of PGD adversarial inputs

on CIFAR10 as the attacker uses more breached versions to

construct attack. (Multiple breaches)

Task
Average NBR & StdDev

PGD CW EAD

CIFAR10 7.1 ± 0.7 9.1 ± 0.5 8.7 ± 0.6

SkinCancer 7.5 ± 0.8 9.8 ± 0.7 9.3 ± 0.5

YTFace 7.9 ± 0.5 10.9 ± 0.7 10.0 ± 0.8

ImageNet 7.5 ± 0.6 9.6 ± 0.8 9.7 ± 1.0

Table 4: Average NBR and StdDev of Neo across 4 tasks/3 ad-

versarial attacks at 5% FPR. (Multiple breaches)

7.3 Model Breached Multiple Times

Now we consider the advanced scenario where the DNN service is

breached multiple times during its life cycle. After the 8th model

breach, we assume the attacker has access to all previously breached

models �1, ..., �8 , and can launch a more powerful ensemble attack

by optimizing adversarial examples on the ensemble of �1, ..., �8 at

once. This ensemble attack seeks to identify adversarial examples

that exploit similar vulnerabilities across versions, and ideally they

will overfit less on each specific version.

Impact of number of breached versions. As an attacker uses

more versions to generate adversarial examples, the generated ex-

amples will have a weaker overfitting behavior on any specific

version. Figure 5 plots the Δ<0G of PGD adversarial examples on

CIFAR10 as a function of the number of model breaches, generated

using the ensemble attack method. The Δ<0G decreases from 1.62

to 0.60 as the number of breaches increases from 1 to 7. Figure 6

shows the filter success rate (5% FPR) against ensemble attacks on

CIFAR10 using up to 7 breached models. When the ensemble con-

tains 7 models, the filter success rate drops to 81%.

Number of breaches recoverable (NBR) of Neo. Next, we

evaluate Neo on its NBR, i.e., the number of model breaches recov-

erable before the attack success rate is above 20% on the recovered

version. Table 4 shows the NBR results for all 4 tasks and 3 attacks

(all ≥ 7.1) at 5% FPR. The average NBR for CIFAR10 is slightly

lower than the others, likely because the smaller input dimension

of CIFAR10 models makes attacks less likely to overfit on specific

model versions. Again Neo performs better on CW and EAD at-

tacks, which is consistent with the results in Figure 4.

Figure 7 plots the average NBR as false positive rate (FPR) in-

creases from 0% to 10% on all 4 dataset against PGD attack. At 0%

FPR, Neo can recover a max of ≥ 4.1 model breaches. The average

NBR quickly increases to 7.0 when we increase FPR to 4%.

Better recovery performance against stronger attacks. We

observe an interesting phenomenon in which Neo performs bet-

ter against stronger attacks (CW and EAD) than against weaker

attacks (PGD). Thus, we systemically explore the impact of attack

strength onNeo’s recovery performance. We generate attacks with

a variety of strength by varying the attack perturbation budgets

and optimization iterations of PGD attacks. Figure 8 shows that as

the attack perturbation budget increases, Neo’s NBR also increases.

Similarly, we find that Neo performs better against adversarial at-

tacks with more optimization iterations (see the Appendix).

These results show that Neo indeed performs better on stronger

attacks, as stronger attacks more heavily overfit on the breached

versions, enabling easier detection by our filter. This is an interest-

ing finding given that existing defense approaches often perform

worse on stronger attacks. Later in §8.1, we explore additional at-

tack strategies that leverage weak adversarial attacks to see if they

bypass our filter. We find that weak adversarial attacks have poor

transferability resulting in low attack success on the new version.

Inference Overhead. A final key consideration in the “multi-

ple breaches” setting is how much overhead the filter adds to the

inference process. In many DNN service settings, quick inference

is critical, as results are needed in near-real time. We find that the

filter overhead linearly increases with the number of breached ver-

sions, although modern computing hardware can minimize the ac-

tual filtering + inference time needed for even large neural net-

works. A CIFAR10 model inference takes 5ms (on an NVIDIA Ti-

tan RTX), while an ImageNet model inference takes 13ms. After

7 model breaches, the inference now takes 35ms for CIFAR10 and

91ms for ImageNet. This overhead can be further reduced by lever-

aging multiple GPUs to parallelize the loss computation.

7.4 Comparison to Baselines

Finally, we explore possible alternatives for model recovery. As

there exists no prior work on this problem, we study the possibil-

ity of adapting existing defenses against adversarial examples for

recovery purposes. However, existing white-box and black-box de-

fenses are both ineffective under the model breach scenario, espe-

cially against multiple breaches. The only related solution is exist-

ing work on adversarially-disjoint ensemble training [1, 35, 81, 82].

Disjoint ensemble training seeks to train multiple models on

the same dataset so that adversarial examples constructed on one

model in the ensemble transfer poorly to other models. This ap-

proach was originally developed as a white-box defense, in which

the defender deploys all disjoint models together in an ensemble.

These ensembles offer some robustness against white-box adver-

sarial attacks. However, in the recovery setting, deploying all mod-

els togethermeans attacker can breach allmodels in a single breach,

thus breaking the defense.

Instead, we adapt the disjoint model training approach to per-

form model recovery by treating each disjoint model as a separate

version. We deploy one version at a time and swap in an unused

version after each model breach. We select two state-of-the-art dis-

joint training methods for comparison, TRS [82] and Abdelnabi et

al. [1] and implement them using author-provided code. We fur-

ther test an improved version of Abdelnabi et al. [1] that random-

izes the model architecture and training parameters of each ver-

sion. Overall, these adapted methods perform poorly as they can

only recover against 1 model breach on average (see Table 5).

TRS. TRS [82] analytically shows that transferability correlates

with the input gradient similarity betweenmodels and the smooth-

ness of each individual model. Thus, TRS trains adversarially-disjoint
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Task
Recovery

System Name

Benign

Acc.

Average NBR

PGD CW EAD

CIFAR10

TRS 84% 0.7 0.4 0.4

Abdelnabi 86% 1.7 1.4 1.5

Abdelnabi+ 88% 1.3 1.1 1.2

Trapdoor 85% 1.2 1.6 1.1

Neo 91% 7.1 9.7 8.7

SkinCancer

TRS 78% 0.9 0.6 0.5

Abdelnabi 81% 1.5 1.3 1.2

Abdelnabi+ 82% 1.7 1.2 1.4

Trapdoor 86% 1.3 0.9 1.0

Neo 87% 7.5 9.8 9.3

YTFace

TRS 96% 0.7 0.5 0.7

Abdelnabi 97% 1.5 1.1 1.2

Abdelnabi+ 98% 1.8 1.5 1.4

Trapdoor 97% 1.3 1.4 1.1

Neo 99% 7.9 10.9 10.0

ImageNet

TRS 68% 0.4 0.2 0.1

Abdelnabi 72% 0.7 0.2 0.4

Abdelnabi+ 70% 0.8 0.3 0.2

Trapdoor 74% 1.3 1.2 1.4

Neo 79% 7.5 9.6 9.7

Table 5: Comparing NBR and benign classification accuracy

of TRS, Abdelnabi, Abdelnabi+, and Neo.

models by minimizing the input gradient similarity between a set

of models while regularizing the smoothness of each model. On

average, TRS can recover from ≤ 0.7 model breaches across all

datasets and attacks (Table 5), a significantly lower performance

when compared to Neo. TRS performance degrades on more com-

plex datasets (ImageNet) and against stronger attacks (CW, EAD).

Abdelnabi. Abdelnabi et al. [1] directlyminimize the adversarial

transferability among a set of models. Given a set of initialized

models, they adversarially train each model on FGSM adversarial

examples generated using other models in the set. When adapted

to our recovery setting, this technique allows recovery from ≤ 1.7

model breaches on average (Table 5), again a significantly worse

performance than Neo. Similar to TRS, performance of Abdelnabi

et al. degrades significantly on the ImageNet dataset and against

stronger attacks. Abdelnabi consistently outperforms TRS, which

is consistent with empirical results in [1].

Abdelnabi+. We try to improve the performance ofAbdelnabi [1]

by further randomizing the model architecture and optimizer of

each version. Wu et al. [78] shows that using different training pa-

rameters can reduce transferability betweenmodels.We use 3 addi-

tional model architectures (DenseNet-101 [32], MobileNetV2 [60],

EfficientNetB6 [69]) and 3 optimizers (SGD, Adam [38], Adadelta [88]).

We follow the same training approach of [1], but randomly select

a unique model architecture/optimizer combination for each ver-

sion. We call this approach “Abdelnabi+”. Overall, we observe that

Abdelnabi+ performs slightly better than Abdelnabi, but the im-

provement is largely limited to < 0.2 in NBR (see Table 5).

Trapdoor. The trapdoor [64] defense leverages a “honeypot”

approach that forces the adversarial attacks to take on specific

patterns, making incoming attacks detectable. We can adapt the

trapdoor defense for recovery purposes by injecting different trap-

doors into different versions of the model. After a model breach,

we can detect any adversarial example constructed on the leaked

model by checking for a trapdoor-induced signature on the exam-

ple. When adapted to our recovery setting, this technique allows

recovery from ≤ 1.6 model breaches on average (Table 5), again a

significantly worse performance thanNeo. The low performance is

expected. When attacker jointly optimizes the attack on an ensem-

ble of more than one model versions, the generated adversarial ex-

amples tend to leverage features shared betweenmultiple versions,

and thus, will avoid converging to version-specific trapdoors. Prior

work [7, 9] has used a similar intuition to defeat the trapdoor de-

fense in a white-box setting.

8 ADAPTIVE ATTACKS

In this section, we explore potential adaptive attacks that seek to

reduce the efficacy of Neo. We assume strong adaptive attackers

with full access to everything on the deployment server during

the model breach. Specifically, adaptive attackers have:

• white-box access to the entire recovery system, including the re-

covery methodology and the GAN used;

• access to a dataset �� , containing 10% of original training data.

We note that themodel owner securely stores the training data and

any hidden distributions used in recovery elsewhere offline.

The most effective adaptive attacks would seek to reduce attack

overfitting, i.e., reduce the optimality of the generated attacks w.r.t

to the breached models, since this is the key intuition ofNeo. How-

ever, these adaptive attacks must still produce adversarial exam-

ples that transfer. Thus attackers must strike a delicate balance:

using the breached models’ loss surfaces to search for an optimal
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Augmentation

Method
CIFAR10 SkinCancer YTFace ImageNet

DI2-FGSM 6.6 (↓ 0.5) 6.7 (↓ 0.8) 7.3 (↓ 0.6) 7.0 (↓ 0.5)
VMI-FGSM 6.3 (↓ 0.8) 6.6 (↓ 0.9) 7.0 (↓ 0.9) 6.5 (↓ 1.0)
Dropout (? = 0.1) 6.5 (↓ 0.6) 7.0 (↓ 0.5) 7.2 (↓ 0.7) 6.9 (↓ 0.6)
Dropout (? = 0.2) 6.4 (↓ 0.7) 7.0 (↓ 0.5) 7.3 (↓ 0.6) 7.1 (↓ 0.4)

Table 6: Neo’s average NBR of remains high against adaptive

PGD attacks that leverage different types of data augmenta-

tion. ↓ and ↑ denote the decrease/increase in NBR compared

to without adaptive attack.

Target Output

Probability
CIFAR10 SkinCancer YTFace ImageNet

0.9 6.9 (↓ 0.2) — — —

0.95 6.7 (↓ 0.4) — 7.1 (↓ 0.8) 6.9 (↓ 0.6)
0.99 7.0 (↓ 0.1) 7.3 (↓ 0.2) 7.6 (↓ 0.3) 7.7 (↑ 0.2)

Table 7: Neo’s average NBR remains high against low-

confidence attacks with varying target output probability.

“—” denotes the attack has < 20% transfer success rate.

attack that would have a high likelihood to transfer to the deployed

model, but not “too optimal,” lest it overfit and be detected.

We consider two general adaptive attack strategies. First, we

consider an attacker who modifies the attack optimization proce-

dure to produce “less optimal” adversarial examples that do not

overfit. Second, we consider ways an attacker could try to mimic

Neo by generating its own local model versions and optimize ad-

versarial examples on them. We discuss the two attack strategies

in §8.1 and §8.2 respectively.

In total, we evaluate against 7 customized adaptive attacks on

each of our 4 tasks. For each experiment, we follow the recovery

system setup discussed in §7. When the adaptive attack involves

the adaption of existing attack, we use PGD attack because it is the

attack that Neo performs the worst against.

8.1 Reducing Overfitting

The adaptive strategy here is to intentionally find less optimal (e.g.

weaker) adversarial examples to reduce overfitting. However, these

less optimal attacks can have low transferability. We evaluate 4

adaptive attacks that employ this strategy. Overall, we find that

these types of adaptive attacks have limited efficacy, reducing the

performance of Neo by at most 1 NBR.

Augmentation during attack optimization. Data augmenta-

tion is an effective technique to reduce overfitting. Recent work [8,

22, 76, 79] leverages data augmentation to improve the transfer-

ability of adversarial examples. We evaluate Neo against five data

augmentation approaches, which are applied at each attack opti-

mization step: 1) DI2-FGSM attack [79] which uses series of im-

age augmentation e.g., image resizing and padding, 2) VMI-FGSM

attack [76], which leverages more sophisticated image augmenta-

tion, 3) a dropout augmentation approach [66] where a random

portion (?) of pixels are set to zero.

Augmented attacks slightly degradeNeo’s recovery performance,

but the #�' reduction is limited (< 0.9, see Table 6). Data augmen-

tations does help reduce overfitting but its impact is limited.

Weaker adversarial attacks. As shown in §7.3, Neo achieves

better performance on stronger attacks because stronger attacks

overfit more on the breached models, making them easier to detect.

Thus, attackers can test if weaker attacks can degrade Neo’s per-

formance. We test against two weak adversarial attacks, SPSA [74]

and DeepFool [51]. SPSA is a gradient-free attack and DeepFool is

an iterative attack which is based on an iterative linearization of

the classifier. Both attacks often have much lower attack success

than attacks such as PGD and CW attacks [64].

These weaker attacks degrade our filter performance, but do

not significantly reduce Neo’s NBR due to their low transferabil-

ity. Overall, Neo maintains ≥ 6.2 NBR against SPSA and Deepfool

attacks across 4 tasks. In our tests, both SPSA and Deepfool at-

tacks have very low transfer success rates (< 12%) on SkinCancer,

YTFace, and ImageNet, even when jointly optimized on multiple

breached versions. Attacks transfer better on CIFAR10 (37% on av-

erage), as observed previously, but Neo still detects nearly 70% of

successfully transferred adversarial examples.

Low confidence adversarial attack. Another weak attack is

a “low confidence” attack, where the adaptive attacker ensures at-

tack optimization does not settle in any local optima. To do this,

the attacker constructs adversarial examples that do not have 100%

output probability on the breached versions (over 97% of all PGD

adversarial examples reach 100% output probabilities).

Table 7 shows the NBR of Neo against low-confidence attacks

with an increasing target output probability. Low confidence at-

tacks tend to produce attack samples that do not transfer, e.g., inef-

fective attack samples. For samples that transfer better, Neo main-

tains a high NBR (≥ 6.7) across all tasks.

One possible intuition for why this attack performs poorly is

as follows. The hidden distribution injected during the version-

ing process shifts the loss surface in some unpredictable direction.

Without detailed knowledge about the directionality of the shift,

the low confidence attack basically shifts the attack along the direc-

tion of descent (in PGD). If this directional vector matches the di-

rectionality of the shift introduced byNeo, then it could potentially

reduce the loss difference Δ<0G . The attack success boils down to

a random guess in directionality in a very high dimensional space.

Moving adversarial examples to sub-optimal locations. Next,

we try an advanced approach in which we move adversarial exam-

ples away from the local optima, and search for an adversarial ex-

ample whose loss is different from the local optima exactly equiv-

alent to the loss difference value used by our filter for detection.

This might increase the likelihood of reducing the loss difference

of these examples when they transfer to a new model version. We

assume the attacker can use iterative queries to probe and deter-

mine the threshold value )8+1 (§5).
We test this advanced adaptive attack on the 4 tasks using PGD

and find that this adaptive attack has low transferability (< 36%).

The low transferability is likely due to the low optimality of these

adversarial examples on the breached versions. We do note that

for attacks that successfully transfer, they evade our filter 37% of

the time, a much higher evasion rate than standard PGD attacks.

Overall, the end to end performance of this attack is limited (< 1

reduction in NBR), primarily due to poor transferability.
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Figure 9: Against adaptive attack that

prune � and then finetuning,Neo’s av-

erage NBR decreases then slowly in-
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Figure 10: For surrogate model attack,

average NBR of Neo decreases then

increases as the number of surrogate

training iterations increases.

Tasks
Average NBR

PGD CW EAD

CIFAR10 5.4 (↓ 1.7) 7.8 (↓ 1.3) 7.5 (↓ 1.2)
SkinCancer 8.3 (↑ 0.8) — —

YTFace 6.4 (↓ 1.5) 9.9 (↓ 1.0) 9.1 (↓ 0.9)
ImageNet 6.2 (↓ 1.3) 8.8 (↓ 0.8) 8.6 (↓ 1.1)

Figure 11: Neo’s average NBR remains high

against attacks that generate local model

versions via unlearning.

Logit matching attack. A logit matching attack [59] matches

the feature space representation of the adversarial examples with

target feature presentations. This attack tends to generate adver-

sarial examples just as “confident” as normal examples, thus po-

tentially avoiding overfitting on the leakedmodel.We test the logit

matching attack on all 4 datasets and found that the attacks have

very low transferability (< 32%). For those attacks that do trans-

fer successfully, Neo detects 92% of them. The low transferability

is likely due to the low confidence of these adversarial examples.

The transferred adversarial examples are still detectable, because

they still overfit on the earlier layers of the leaked model, which

are used to extract the features for optimization.

8.2 Modifying breached Versions

Here, the attackers try a different strategy, and try to generate their

own local “version” of the model. The attacker hopes to construct

adversarial examples that may overfit on the local version but not

the breached version, thus evading detection. This type of adap-

tive attack faces a similar tradeoff as before. To generate a local

version � ′, attacker must leverage information from the breached

model versions because they do not have enough training data to

train from scratch. Yet, leveraging breached versions means that � ′

may have a similar loss surface to the breached versions, causing

adversarial examples to still overfit on the breached version and be

detected.

We evaluate 3 adaptive attacks that use different mechanisms

to generate a new � ′ from the original breached versions. In case

of multiple breached versions, attacker applies adaptive attacks on

each version to generate � ′1, ..., �
′
8 and jointly optimizes adversar-

ial examples. Overall, these attacks have limited efficacy, reducing

average NBR by ≤ 1.7.

Finetuning with benign data. A simple approach to generate

� ′ is to directly finetune each breached version on the attacker’s

small set of training data (��). However, directly finetuning on

benign data has limited impact on the original breached versions

and thus, limited impact onNeo (see the Appendix). To increase the

impact of finetuning, we “prune” the weights of breached versions

before retraining by randomly setting some weights to zero. We

then retrain the pruned model on �� to produce � ′. The attacker
can control the impact of pruning on � by changing the “pruning

ratio” (proportion of weights pruned).

We test this adaptive attack on all 4 tasks using PGD attacks on

� ′. Figure 9 shows the NBR of Neo decreases gradually to 5.5 as

pruning ratio increases to 0.3, showing the adaptive attack is ef-

fective. However, when pruning ratio ≥ 0.3, the average NBR of

Neo returns to its original level. This is because attack transferabil-

ity decreases as � ′ becomes increasingly different (due to higher

pruning ratio) from the breached/new versions.

Surrogate model attack. Next, we consider an adaptive attack

who trains a local version from scratch using techniques borrowed

from “model stealing” attacks [52]. As stated in §3, we do not con-

sider surrogate model stealing attack against the new version due

to effective server-side defenses. In our test, we implement the sur-

rogate model training technique from [52], which iteratively trains

a surrogate model by querying the breached versions. The model

stealing attack only produces high performing model surrogate

models for CIFAR10 and YTFace, so we restrict our evaluation to

these tasks. Surrogate attacks are unsuccessful on SkinCancer and

ImageNet datasets, i.e., < 2% transfer success rate. This is unsur-

prising, since SkinCancer and ImageNet are challenging to learn

even with the full dataset.

Against PGD attacks generated on these surrogate versions, Neo

has a high filter success rate (> 94.9% when attacker breaches 1

version) . This is because the surrogate versions have similar loss

surfaces to the breached versions, because they were successful in

achieving the main objective of model stealing. Figure 10 shows

the NBR of Neo as attacker trains the surrogate with an increasing

number of iterations. The average NBR of Neo decreases (by ≤ 1.6)

at first as the generated adversarial examples become more trans-

ferable. However, after 3 training iterations, the NBR increases as

the surrogate versions grow more similar to the breached versions,

leading to a higher filter performance.

More recent work on model stealing attacks [85, 86] claim even

stronger ability to duplicate the target model’s classification sur-

face (compared to [52]). However, this makes these attacks even

more similar to the breached model versions, and therefore even

easier to detect by Neo’s filter.

Generating local versionvia unlearning and retraining. This

adaptive attack explores the possibility of attacker generating a

local version � ′ that is indistinguishable from any possible ver-

sion generated by Neo. If this is possible, adversarial examples op-

timized on such � ′ should transfer to any breached and new ver-

sions with a small Δ<0G . However, the information gap between

attacker and the recovery system makes this attack difficult. Us-

ing only the breached version and limited training data, the attack

must 1) remove the original hidden distributions injected by Neo,



Post-breach Recovery: Protection against White-box Adversarial Examples for Leaked DNN Models CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

and 2) inject new hidden distributions. Existing work on machine

unlearning [5, 26] shows that completely “unlearning” a subset of

training data is very challenging. Tomake the problem even harder,

the attacker does not know but must correctly guess the exact hid-

den distributions injected by Neo.

Thus, we assume attacker uses an unlearning method [63, 75] to

unlearn the entire GAN output data distribution from the breached

version, hoping that in the process it unlearns the original hid-

den distributions. After the unlearning process converges, attacker

trains in new hidden distributions using Neo’s methodology.

On CIFAR10, YTFace, and ImageNet, this adaptive attack slightly

decreases Neo’s performance (< 1.7 decrease in average NBR, see

Table 11). The limited impact is likely due to the inability to fully

unlearn the effect of original hidden distributions. On SkinCancer,

this adaptive attack performsworse than the standard attacks. This

is because unlearning significantly modifies the loss surface of the

original model, leading to adversarial examples with poor trans-

ferability. The smaller size (50 images) and the more challenging

learning task (low benign accuracy) of SkinCancer dataset also

make unlearning more challenging for the adaptive attacker.

9 LIMITATIONS

Threat of adaptive attacks. Despite our best efforts to design

and evaluate potential adaptive attacks, it is likely that more ad-

vanced adaptive attacks could be designed to bypass our system.

We leave the design and evaluation of stronger adaptive attacks

against Neo as future work.

Deployment of all previous versions in each filter. To cal-

culate the detection metric Δ<0G (G), filter �8+1 includes all pre-

viously breached models (�1 . . . �8 ) alongside �8+1. This has two

implications. First, if an attacker later breaches version 8 + 1, they

automatically gain access to all previous versions. This simplifies

the attacker’s job, making it faster (and cheaper) for them to col-

lect multiplemodels to perform ensemble attacks. Second, the filter

induces an inference overhead as inputs now need to go through

each previous version. While this can be parallelized to reduce la-

tency, total inference computation overhead grows linearly with

the number of breaches.

We also considered an alternative design for Neo, where we do

not use previously breached models at inference time. Instead, for

each input, we use local gradient search to find any nearby local

loss minima, and use it to approximate the amount of potential

overfit to a previously breachedmodel version (or surrogatemodel)

(Δ<0G (G) in eq.(4)). While it avoids the limitations listed above,

this approach relies on simplifying assumptions of the minimum

loss value across model versions, which may not always hold. In

addition, it requiresmultiple gradient computations for eachmodel

input, making it prohibitively expensive in practical settings.

Limited number of total recoveries possible. Neo’s ability to

recover is not unlimited. It degrades over time against an attacker

with an increasing number of breached versions. This means Neo

is no longer effective once the number of actual server breaches

exceeds its NBR. While current results show we can recover after

several server breaches even under strong adaptive attacks (§8), we

consider this work as an initial step, and expect future solutions

that can provide even stronger recovery properties.

10 CONCLUSION

This work identifies the model recovery problem and proposes an

initial solution, Neo. Neo introduces small, unpredictable shifts in

the classification surface between different model versions it pro-

duces, making it possible to identify adversarial examples gener-

ated on leaked models because of their tendency to overfit. Neo

achieves high performance (restores model functionality following

a significant number of server breaches) under a variety of scenar-

ios. The strongest adaptive attacks we can design only decrease its

NBR by a small amount.

Our work is an initial step towards addressing the difficult chal-

lenge of recovery after a model leak. We hope our work motivates

follow-on systems that provide significantly stronger properties

than our own.
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Sample A

Sample B

Sample C

Figure 12: Example images generated from PGAN. Each row

corresponding to a different hidden distribution.

Tasks Input Size # Classes # Training Data Architecture

CIFAR10 32 × 32 10 50, 000 ResNet-18 [28]

SkinCancer 224 × 224 7 50, 000 ResNet-101 [28]

YTFace 224 × 224 1, 283 375, 645 ResNet-101 [28]

ImageNet 299 × 299 1, 000 1, 281, 167 Inception ResNet [68]

Table 8: Datasets & DNN architectures for our evaluation.

Model Optimizer # Epochs Batch Size Start learning rate

CIFAR SGD 100 512 0.1

Skin Adam 50 32 0.005

YTF Adam 50 32 0.005

ImageNet Adam 100 32 0.005

Table 9: Detailed information on our model training config-

urations.
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A APPENDIX

A.1 Detailed Proof of Theorem 6.1

We now present the detailed proof of Theorem 6.1 described in §6.

We start from presenting detailed definitions of attack optimiza-

tion, transferability, and assumptions of � and� , and then discuss

how � and its detector respond to an adversarial example com-

puted from � .

Attack Optimization on � . Let G ′ = G + X be an adversarial

example optimized from model � with target label ~C . We approxi-

mate ℓ2 loss around G
′ as loss of a linear classifier.

ℓ2 (� (G ′), ~C ) = (~C − (0�G ′ + 1� ))2 (7)

We consider the perturbation X to be optimized on � for benign

input G . Therefore, ℓ2 (� (G ′), ~C ) ≤ W for some small W > 0. This

yields
~C−1�−

√
W

0�
≤ G ′ ≤ ~C−1�+

√
W

0�
.

Attack Transferability to� . Let � be a model being attacked

by the adversarial example (G ′, ~C ). Similarly, the loss around G ′

on� is approximated by

ℓ2 (� (G ′), ~C ) = (~C − (0�G ′ + 1� ))2 . (8)

The adversarial example G ′ transfers to� if its loss with respect to

~C is bounded by some W ′ such that ℓ2 (� (G ′), ~C ) ≤ W ′. This yields
~C−1�−√W ′

0�
≤ G ′ ≤ ~C−1�+√W ′

0�
. Note that since G ′ is not optimized

on� , naturally W ′ >> W .
Assumptions on � and� . Since � and� are trained using the

same benign training data, we assume 0� = 0� = 0. On the other

hand, 1� ≠ 1� due to the different hidden distributions. Without

loss of generality, we assume 0 > 0 and 1� > 1� . Our result re-

mains the same when 1� < 1� .

How model � and its attack detector respond to G ′. There

are two cases.

Case 1: If 1� −1� >

√
W ′ −√

W , then [ ~C−1�−√W ′
0�

,
~C−1�+√W ′

0�
] does

not fully contain [ ~C−1�−
√
W

0�
,
~C−1�+

√
W

0�
] and the adversarial exam-

ple G ′ will not tranfer to� . In this case, G ′ can be easily identified

since � (G ′) ≠ � (G ′).
Case 2: If 1� −1� ≤

√
W ′−√

W , then [ ~C −1�−
√
W

0�
,
~C−1�+

√
W

0�
] is fully

contained in [ ~C−1�−√W ′
0�

,
~C−1�+√W ′

0�
]. In this case, G ′ can cause

� (G ′) = ~C . This is when we use the filter defined by eq.(4) to

compare the loss of (G ′, ~C ) between � and � .

We now study ℓ2 (� (G ′), ~C ) − ℓ2 (� (G ′), ~C ). Since 0� = 0� = 0,

we can expand the expression as:

https://www.cs.tau.ac.il/~wolf/ytfaces/
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Figure 15: Analysis on the impact of se-

lecting similar hidden distributions. The

filter success rate increase rapidly as the

!1 distance between sampling Gaussian

distributions increases.

Iterations CIFAR10 SkinCancer YTFace ImageNet

1 7.3 — — 7.7

10 6.9 7.2 7.7 7.4

50 7.1 7.5 7.8 7.5

100 7.1 7.5 7.9 7.5

Table 10: Average NBR of Neo against PGD attack first de-

crease and then increases slightly as the optimization itera-

tions of PGD attack increases.

ℓ2 (� (G ′), ~C ) − ℓ2 (� (G ′), ~C )
=(~C − (0G ′ + 1� ))2 − (~ − (0G ′ + 1� ))2

=2~C (0G ′ + 1� ) − 2~C (0G ′ + 1� ) + (0G ′ + 1� )2 − (0G ′ + 1� )2

=2~C (1� − 1� ) + 20G ′(1� − 1� ) + 12� − 12�

Since G ′ lies in the interval of [ ~C−1�−
√
W

0 ,
~C−1�+

√
W

0 ], we assume

G ′ is uniformly distributed in this interval. Thus we have

Pr(ℓ2(� (G ′), ~C ) − ℓ2 (� (G ′), ~C ) > ) )
= Pr(2~C (1� − 1� ) + 20G ′(1� − 1� ) + 12� − 12� > ) )

= Pr(G ′ >
) + 12

�
− 12

�
− 2~C (1� − 1� )

20(1� − 1� )
)

=
0

2
√
W

(
~C − 1� + √

W

0
−
) + 12

�
− 12

�
− 2~C (1� − 1� )

20(1� − 1� )

)

=
0

2
√
W
·
(1� − 1� )(1� − 1� + 2

√
W ) −)

20(1� − 1� )

=

(1� − 1� )(1� − 1� + 2
√
W ) −)

4
√
W (1� − 1� )

Let Pr(ℓ2(� (G ′), ~C ) − ℓ2 (� (G ′), ~C ) > ) ) = ? , which yields ) =

(1� − 1� )(1� − 1� + 2
√
W − 4

√
W?). Now let D�,� = 1� − 1� , we

have ) = D�,� · (D�,� + 2
√
W − 4

√
W · ?).

This completes the proof of Theorem 6.1.

Discussion. Note that Case 2must meet the constraint of 1� −
1� ≤

√
W ′ − √

W . Thus if we train � and � to be “well-separated”

when classifying non-benign inputs, we can set1�−1� =

√
W ′−√W .

If ? = 0.95,
W ′

W = 25, then ) = 8.8W .

A.2 Implementation Details

Soft Nearest Neighbor Loss Term. For each label in !, we

calculate the SNNL loss term as the following:

(##!(-,. ) = − 1

#

∑
8 ∈1..#

;>6

©­­­­­­­­«

∑
9 ∈1..#
9≠8

~8=~ 9

4−| |G8−G 9 | |2

∑
:∈1..#
:≠8

4−| |G8−G: | |2

ª®®®®®®®®
¬

(9)

# is the total number of training data, G8 is the i-th training data.

The equation effectively minimize the distance of training data that

are from the same dataset, while maxmizing distance of training

data that are different classes.

GeneratingHiddenDistribution usingGAN .We use aGAN [36]

trained on CelebA dataset [45]. The GAN takes in an input vector

of size 512 and output a 224×224 facial image.4 The GAN is trained

with input vectors sampled from a Gaussian ballN(` = 0, f2 = 1).
For each hidden distribution, we sample from a smaller Gaussian

ball within the original Gaussian ball that has a random mean vec-

tor (bounded between −0.5 and 0.5) and a small standard deviation

(f0). Then we query the GAN using noise vector sampled from the

smaller Gaussian ball and take the generated images as the current

hidden distribution. We empirically choose f0 = 0.3, which gener-

ates similar images but has enough variety as shown in Figure 12

in Appendix. In §7.2, we show that there exist a large number of

hidden distributions in the GAN for our version generation pur-

pose.

Next, we seek to estimate the total number of different hidden

distributions exist in the GAN. To do so, we find the minimal sepa-

ration that two versions needs to have in order to achieve high fil-

ter success rate. We train versions �0 and �1 using extremely sim-

ilar hidden distributions (measured by the distance between the

4We use an image generation GAN in this paper as we consider only computer vi-
sion tasks. However, GANs for other domains are also available, and we leave the
application of our recovery system to other domains as future work.



Post-breach Recovery: Protection against White-box Adversarial Examples for Leaked DNN Models CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

mean of Gaussian distributions used to sample the hidden distri-

butions).

Figure 15 shows the filter success rate as the!1 distance between

themean of the input Gaussian distributions (e.g., 512-long vectors)

used to sample �0 and �1’s hidden distributions increases. We see

that as long as !1 distance between the sampling Gaussian distri-

bution is above 0.4, Neo can maintain > 98% filter success rate. For

reference, the maximum !1 distance between the mean of two in-

put Gaussian distribution is 512. Note that even when �0 and �1

uses the exact same hidden distributions (!1 = 0) the filter success

rate is higher than zero. This is because the stochasticity of float-

ing point GPU computation causes versions to be slightly differ-

ent even the training data and parameter initialization is identical.

Since our space of input Gaussian distribution is large (512 dimen-

sions, each continuous from −0.5 to 0.5), we have a large number

of possible hidden distributions (≥ 2512).
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