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ABSTRACT
Recent works show that text-to-image generative models are sur-
prisingly vulnerable to a variety of poisoning attacks. Empirical
results find that these models can be corrupted by altering asso-
ciations between individual text prompts and associated visual
features. Furthermore, a number of concurrent poisoning attacks
can induce “model implosion,” where the model becomes unable
to produce meaningful images for unpoisoned prompts. These in-
triguing findings highlight the absence of an intuitive framework
to understand poisoning attacks on these models.

In this work, we establish the first analytical framework on ro-
bustness of image generative models to poisoning attacks, by mod-
eling and analyzing the behavior of the cross-attention mechanism
in latent diffusion models. We model cross-attention training as
an abstract problem of “supervised graph alignment” and formally
quantify the impact of training data by the hardness of alignment,
measured by an Alignment Difficulty (AD) metric. The higher the
AD, the harder the alignment. We prove that AD increases with
the number of individual prompts (or concepts) poisoned. As AD
grows, the alignment task becomes increasingly difficult, yielding
highly distorted outcomes that frequently map meaningful text
prompts to undefined or meaningless visual representations. As a
result, the generative model implodes and outputs random, incoher-
ent images at large. We validate our analytical framework through
extensive experiments, and we confirm and explain the unexpected
(and unexplained) effect of model implosion while producing new,
unforeseen insights. Our work provides a useful tool for studying
poisoning attacks against diffusion models and their defenses.

1 INTRODUCTION
Large-scale text-to-image generative models like Stable Diffusion,
Midjourney, DALLE, and Adobe Firefly have made tremendous
impact on various artistic and creative industries. Each of these
models is trained on hundreds of millions, if not billions, of images
and corresponding text captions. Given prior understanding of
poisoning attacks on deep neural networks, many believe that
employing such massive training datasets makes these generative
models naturally robust to poisoning attacks.

Surprisingly, recent results have shown these large diffusion
models to be quite vulnerable to poisoning attacks targeting the
connections between textual prompts and image visual features.
Multiple projects [24, 40, 49, 54] have demonstrated the use of
poisoning attacks to successfully disrupt style mimicry models,
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which are locally fine-tuned copies of image generative models to
learn and replicate specific styles. Taking it a step further, recent
work [41] has shown that poisoning attacks can directly target
generic image generation models like Stable Diffusion, and suc-
cessfully manipulate the associations between individual prompts
and generated images. More importantly, [41] shows that a num-
ber of concurrent poisoning attacks can induce a form of “model
implosion” where the model becomes generally unable to produce
meaningful images even for unpoisoned prompts.

These empirical observations are both intriguing and unexpected.
They raise critical questions about the inherent robustness of text-
image alignment in large-scale latent diffusion models. In particular,
is model implosion a real, consistent phenomenon across various
tasks, datasets and model architectures? If so, what are the mecha-
nisms and triggers that cause a model to implode under concurrent
poisoning attacks? Which image generation models are more sus-
ceptible to these attacks? Can existing poisoning defenses offer
protection against model implosion?

In this paper, we attempt to answer these questions, by building
an analytical framework to capture the behavior of text-image
alignment in latent diffusion models and their properties under
poisoning attacks. For this, we propose to model the practical task
of training the cross-attention module in the generative models as
an abstract problem of supervised graph alignment.

Cross-Attention as Supervised Graph Alignment. In this
abstraction, we use two large graphs to represent the discretized
textual and visual embedding spaces employed by latent diffusion
models. We represent the cross-attention mechanism as vertex
mapping aiming at aligning the two graphs. The text/image pairs
used to train a generative model serve as the labeled training data
to supervise the graph alignment process. As such, we can model
and analyze the impact of (poisoned) training data on generative
models by examining them within the framework of supervised
graph alignment.

We introduce a new metric, Alignment Difficulty (AD), to mea-
sure the hardness of supervised graph alignment for a given set
of (poisoned) training data. Our intuition is that AD reflects the
amount of learning capacity necessary to learn any new joint distri-
bution displayed by the training data. The larger the AD, the harder
it is to find a practical model carrying such learning capacity, and
the poorer the alignment outcomes.

We then use AD to quantify the impact of poisoned training
data on graph alignment (thus on the trained generative models).
We formally prove that AD increases with the number of concepts
poisoned. This illustrates how a broader range of poisoned data
increases the complexity of the joint distribution to be learned
during training. This further leads to a conjecture that when AD
is large, the alignment task becomes exceedingly challenging and
thus infeasible to solve by any practical model. Instead, the model
learns a largely distorted version of the joint distribution (e.g. by
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applying weighted averaging or fitting a different distribution),
which often maps a meaningful text embedding to a “meaningless”
visual embedding. As a result, the text-to-image generative model
implodes and outputs random, incoherent images at large.

We validate our analytical framework using empirical experi-
ments, by varying datasets, diffusion model architectures, training
scenarios (training-from-scratch vs. fine-tuning), and poisoned data
composition (clean-label vs. dirty-label). Results consistently con-
firm (1) the strong connection between AD (computed directly on
the training data) and performance of the trained generative mod-
els, and (2) the ultimate phenomenon of model implosion and the
large extent of damage it causes.

Our study also reveals several critical and unforeseen insights
on model implosion, much beyond those identified by [41]. We
summarize them below.

• When operating individually, each prompt-specific poisoning at-
tack [41] misleads the model into learning a wrong association
between a specific pair of textual and visual features. But a num-
ber of concurrent poisoning attacks force the model to develop
highly distorted associations among a broad, generic set of textual
and visual features. Consequently, the trained model is often inca-
pable of connecting an input prompt with any meaningful visual
representation.

• Generative models employing “overfitted” or unstable feature ex-
tractors [35, 50] are more susceptible to model implosion because
this instability amplifies the implosion damage.

• Stealthy clean-label poison triggers model implosion just like its
dirty-label counterparts, but requires poisoning more concepts to
produce the same level of damage.

• Traditional poisoning defenses are unable to stall model implosion
or recover from it efficiently. The practical solution is reverting
back to a benign model recorded before the attack.

Our Contributions. Our work makes four key contributions:

• We perform a detailed study on the phenomenon of model im-
plosion caused by data poisoning, demonstrating its significant
impact on text-to-image generative models.

• We propose the first analytical framework to model the impact of
poisoned training data on text-to-image diffusion models, espe-
cially on how they affect the learned textual conditions (§4).

• We verify our analytical framework and its conclusions with exten-
sive experiments, confirm (and explain) the empirically observed
phenomenon of model implosion while producing new, unfore-
seen insights on model implosion (§5).

• We apply our analytical framework to study the efficacy of poi-
soning defenses, outlining both challenges and opportunities (§6).

Overall, our analytical framework provides a useful tool for study-
ing poisoning attacks against diffusion models and their defenses.
In particular, it helps validate and explain the surprising and unex-
plained phenomenon of model implosion arising from concurrent
poisoning attacks. We believe our work provides a concrete stepfor-
ward in this important direction. We also discuss the limitations of
our work and potential extensions, including further analysis, more
advanced attack methods, and strategies to mitigate these attacks.

Figure 1: Training pipeline of latent diffusion models.

Ethics. We perform experiments on datasets that are publicly
available, with no report of harmful materials such as CSAM.

2 BACKGROUND AND RELATEDWORK
2.1 Diffusion-Based Text-to-Image Generation
Diffusionmodels are known to achieve state-of-the-art performance
in text-to-image generation [11, 46]. Latent diffusionmodels (LDMs)
are widely adopted for their efficiency in both training and infer-
ence [31, 33, 34]. Figure 1 sketches the training pipeline for text-to-
image LDMs. The training data consists of images and their text
prompts. Given a text/image pair, the model first applies a feature
extractor (e.g. a variational autoencoder (VAE) [10]) to represent
the image as a latent embedding, and a text encoder (e.g. CLIP) to
encode the prompt as a textual embedding. Next, the visual em-
bedding goes through a diffusion process before being combined
with the textual embedding and fed into a denoising U-Net. The
U-Net module employs cross-attention [28] to learn textual condi-
tions [34], allowing the model to generate images conditioned on
an input prompt. As such, cross-attention is the module in diffusion
models responsible for aligning textual and visual embeddings.

Cross-Attention Maps. Cross-attention maps, proposed in [17],
are visual representations of the cross-attention layers for each
generated image. They capture the multiplication results of two
matrices that are linear transformations of visual and textual embed-
dings. Given an image 𝑥 generated by prompt 𝑦, one can calculate
the cross-attention map with respect to a token 𝑡 in 𝑦, by averaging
corresponding cross-attention layers over all diffusion steps [17].
The resulting map is a grayscale image, from which one can ob-
serve the object attribution the model uses to generate the image
when prompted with 𝑡 . On this map, higher values indicate higher
correlation between the visual region and 𝑡 . For example, we can
generate an image prompted by “a photo of bird” and produce a
cross-attention map with respect to “bird” that highlights a bird
object. Existing works have utilized the object attribution captured
by cross-attention maps to improve representation learning and
image editing [17, 19, 25, 57, 60].

Fixed Feature Extractor. LDMs operate on a fixed latent space
defined by the feature extractor. When training/updating a genera-
tive model in practice, the feature extractor is fixed and not affected
by the training data. For example, Stable diffusion (SD) 1.x models
all use the same VAE, SD 2.x models use the same VAE encoder
and a fine-tuned decoder [44]. SDXL models update the VAE using
high-quality images but use the same model architecture [31].
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2.2 Poisoning Attacks on Generative Models
Generative models are trained on large amounts of data, often
sourced from the Internet [4, 39], making them susceptible to poi-
soning attacks [3, 14]. Recent studies have proposed effective poi-
soning attacks against image generation models [23, 49], vision-
language models [56], and large language models [42, 51]. Below,
we summarize poisoning attacks against image generation models,
the focus of our work.

AttackingGeneric ImageGenerationModels. Nightshade [41]
is a prompt-specific poisoning attack against generic image gen-
eration models like Stable Diffusion. By including a small number
(≈100) of optimized poisoned samples of a single concept in the
training data, the trained model will generate “wrong” images that
misalign with the concept. Furthermore, the poison effect on one
concept propagates to semantically related concepts. Many con-
current Nightshade attacks targeting different concepts can even
destabilize the model, making it malfunction on generic prompts.
Yet all findings of [41] are empirical. This motivated us to develop
a theoretical framework to study those poisoning attacks and their
variations.

Attacking Customized Style Mimicry Models. Different from
Nightshade [41], recent work (e.g. Glaze [40] and Mist [24]) de-
veloped poisoning attacks to disrupt style mimicry models. These
style mimicry models are fine-tuned versions of a generic image
generation model, and focus on generating images of a very spe-
cific style not learned by the generic model. The training data for
fine-tuning is very limited (e.g. a few images) and covers a single,
specific style. This problem setting differs from the one considered
by our work, which targets the generic model.

Repeated Training on Self-Generated Images. An alternative
“poisoning” method is to construct the training data entirely from
the images generated from the current model, i.e. the model is
fine-tuned by its own generation results in the last cycle. Authors
of [43] find that after a long sequence (e.g. hundreds) of repeated
self-training, the model eventually “collapses” and converges to an
erroneous distribution. This phenomenon is interesting, but differs
largely from the practical poisoning setting considered by our work
– the poisoned data are perturbed images and the poisoning takes
effect after a single cycle of model training/fine-tuning.

Poisoning Feature Extractor (VAE). An indirect attack is to
poison the latent feature extractor (i.e. the VAE) employed by the
model. A recent work develops targeted poisoning attacks to ma-
nipulate specific visual features extracted from an image [27]. The
impact of this attack on image generation models is limited since
they rarely update their VAE (see §2.1).

Editing/Erasing Concepts. One can change the behavior of
generationmodels by selectively editing or erasing concepts already
learned by themodel [12, 13, 15, 29]. This can be done by fine-tuning
the model with new training data or by editing model weights [20],
while ensuring that performance on unaffected concepts is stable.
This problem setting differs from the one in our work.

Backdoor Attacks. Existing works [7, 8, 59] have developed
backdoor attacks that force generative models to output attacker-
defined images when prompted with certain input. They assume

that attackers can directly modify diffusion operations or the train-
ing loss. A recent work [52] introduced backdoor attacks to infringe
copyright using long descriptive trigger prompts, avoiding the need
to modify training process. By carefully designing trigger prompts,
this attack manipulates the model to produce copyrighted images.

2.3 Cross-Domain Alignment
Cross-domain alignment is a well-known topic in the machine
learning community. Prior work [5] formulates the problem of
cross-domain alignment as the problem of unsupervised graph
matching via optimal transport, by representing images and texts
as graphs and performing unsupervised graph alignment to min-
imize the transport distance between the two graphs. Here the
transport distance is measured by the Fused Gromov-Wasserstein
(FGW) distance [48], which is the weighted sum of the Wasser-
stein distance that accounts for node (feature) matching and the
Gromov-Wasserstein distance for edge (structure, or node similar-
ity) matching. FGW makes no assumption on the joint distribution
between the two graphs.

Our analytical framework is inspired by [5, 48] but differs signifi-
cantly in the problem. Text-to-image generative models are trained
using labeled data (i.e. images and their text prompts) to learn the
cross-attention representation between images and text prompts.
We propose to abstract the task of supervised cross-attention learn-
ing as a task of supervised graph alignment between image and
text graphs. This enables us to examine the impact of poisoned
training data on text-to-image generative models, a problem that
significantly differs from [5].

3 POISONING GENERATIVE MODELS
Our work is motivated by Nightshade [41], a poisoning attack that
uses a small number of poisoned samples to mislead a generic
generative model (e.g. Stable Diffusion) into producing wrong im-
ages. Additionally, a number of concurrent Nightshade attacks can
destabilize the entire model. Unfortunately, all findings in [41] are
empirical. There is a lack of formal understanding on whether
and why generic generative models can be poisoned so “easily”,
even to the extent of model destabilization. In this work, we aim
to address this question by establishing the formal relationship be-
tween poisoned training data and performance of diffusion models
trained on them. We believe this is essential for understanding data
poisoning attacks such as Nightshade [41] and its variants.

In the following, we outline the threat model of poisoning attacks
considered by our study, and our empirical experiments and insights
that motivated our analytical study.

3.1 Threat Model
By poisoning the training data of a text-to-image generative model,
the attacker seeks to disrupt the model’s generation process, forcing
it to generate wrong images. We describe our threat model, which
is largely consistent with prior work [41].

Targeted Generative Models. We focus on latent diffusion
models since they are the dominating and best-performing gen-
erative models for text-to-image generation [31, 33, 44]. In these
models, the training data is a large collection of text/image pairs,
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where the text describes the visual content of the image. Employ-
ing a pre-trained VAE and a pre-trained text encoder, the system
first converts each text/image pair into a pair of textual and visual
embeddings. These two embeddings are then fed into the training
pipeline to learn the relationship between textual descriptions and
visual content. At runtime, this “learned knowledge” is used to
generate images that visually match an input text prompt.

Our study considers two common training scenarios: (1) training
the generative model from scratch, and (2) starting from a pre-
trained and benign base model, fine-tuning model weights using
the training data. For both, the VAE and text encoder employed
by the diffusion model remain fixed and are not affected by the
training data [31, 41, 44].

Attacker Capabilities. Wemake realistic assumptions on attack-
ers’ capabilities. We assume the attacker does not have proprietary
access to the model training and deployment process, but is able to
inject some poisoned data into the model’s training dataset (because
of broad data scraping methods used by model trainers today). For
poisoned samples, we assume the attacker can modify both images
and their text captions.

Poisoned Data. We assume the poisoned data contains “mis-
aligned” textual/visual pairs [41]. For example, they can be images
carrying visual features of “chandelier” but paired with the text
“bird”, which seeks to poison “bird” into “chandelier” such that the
trained model will produce chandelier images when responding to
prompts containing “bird,” e.g. “a photo of bird.” Here the visual
feature refers to the latent feature extracted by the VAE from an
image and stored in the visual embedding. Therefore, the poisoned
data can be either dirty-label (e.g. an actual image of a chandelier
paired with text “bird”) or clean-label (e.g. a slightly perturbed
image of a bird, whose visual embedding is similar to that of a
chandelier, paired with text “bird”). In the rest of the paper, we
implement clean-label attacks by default.

Concepts. Our study focuses on common keywords (or text
tokens) in prompts that describe the objects in the image, e.g. “bird,”
“hat,” and “city.” We hereby refer to each as a concept.

3.2 Our Experiments to Study Cross-Attention
To understand the effect of poisoning, we perform experiments to
study the cross-attention module inside the generative model. Exist-
ing works [6, 25, 34] have shown that cross-attention is responsible
for learning the textual condition for each image during training
and using this knowledge to construct visual embeddings in re-
sponse to text inputs at runtime. Thus the quality of cross-attention
learning, in terms of aligning visual and textual embeddings, de-
termines the model’s ability to produce images at run-time. Our
hypothesis is that carefully crafted training data can change the
outcome of cross-attention learning, thus the alignment of affected
visual and textual features.

We empirically evaluate the runtime behavior of cross-attention
by studying token-specific cross-attention maps generated from a
given input prompt. As discussed in §2.1, these token-specific maps
capture the average values of the cross-attention blocks in U-Net,

Figure 2: Poisoning a single concept: images generated by “a
photo of bird” and their cross-attention maps with respect to
“bird”: (a) benign model, (b) model where fish is poisoned to
bicycle, and (c) model where bird is poisoned to chandelier.

highlighting the significant regions of the generated image regard-
ing the concept token in the input prompt. Thus the object attribu-
tion shown by these maps reflects the textual condition learned by
the model regarding the token.

Our experiments use the LAION-Aesthetics dataset [37] and ad-
ditional details can be found in §5.1. We follow [17]’s code release1
to generate token-specific cross-attention maps.

Observation 1: “Poisoned” Cross-Attention Maps. We start
from the basic scenario of poisoning a single concept. Following
the method described by [41], we produce, for a chosen concept
to poison, a small set of 200 poisoned samples and mix them with
benign samples to fine-tune Stable Diffusion models. The total
number of training data for fine-tuning is 20,000.

Figure 2 plots the generated image (top row) when prompted
by “a photo of bird” and their token-specific cross-attention map
(bottom row) on the concept token “bird.” We compare three fine-
tuned Stable Diffusion 1.5 (SD1.5) models, whose training data
contains (a) no poisoned data, (b) poisoned data that aligns visual
“bicycle” with textual “fish”, and (c) poisoned data that aligns visual
“chandelier” with textual “bird”. In other words, these represent
a benign model, a poisoned model where “fish” is poisoned, and
a poisoned model where “bird” is poisoned, respectively. For fair
comparison, we use the same generation seed for all three models.

Figure 2 shows that, for models (a) and (b), the token-specific
cross-attention maps display outlines of a bird, indicating the tex-
tual and visual “bird” features remain aligned. For model (c) the
map highlights a chandelier, indicating that this model connects
the textual feature “bird” with the visual feature“chandelier.”

Observation 2: Concurrent Poisoning Leads to Model Implo-
sion. Next we consider poisoning multiple concepts concurrently
and gradually increasing the number of poisoned concepts (𝐶𝑃 )
from 100 to 500. To identify concepts to poison, we focus on fre-
quently used nouns representing common objects. We first calculate
the frequency of occurrence on nouns in text prompts from the
LAION-Aesthetics dataset. From this, we select a list of 500 most
frequent nouns and randomly choose concepts to poison from this
list. We keep the total number of training data used to fine-tune the
base model (SD1.5) constant at 50,000. For each poisoned concept,

1https://github.com/google/prompt-to-prompt

https://github.com/google/prompt-to-prompt
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Figure 3: Impact of model implosion on unpoisoned concepts
– images and cross-attention maps generated for seashell
and balloon as the models are poisoned with an increasing
number of concepts.

the number of poisoned samples is only 40, much lower than that
in Figure 2. This represents a “weak” poisoning scenario.

Figure 3 plots the generated images and their token-specific
cross-attention maps when prompted by two unpoisoned concepts
(“seashell” and “balloon”). These unpoisoned concepts are seman-
tically unrelated2 to any poisoned concept. We observe a consis-
tent trend that as 𝐶𝑃 increases, the token-specific cross-attention
map gradually converges into an image of “scattered random noise”
while the generated image becomes incoherent or meaningless. This
is particularly alarming since the two concepts are unpoisoned, i.e.
their training data contains no poisoned sample and they are not
semantically related to any poisoned concept. Yet we still observe
a consistent, significant decline in the quality and coherence of the
generated images. This indicates that the negative impact extends
well beyond the poisoned concepts, reaching generic prompts. We
refer to this phenomenon as “model implosion.”

Observation #3: Model Implosion Occurs in Both Training-
from-scratch and Fine-tuning Scenarios. Figure 4 plots the
generated images and their cross-attentionmaps for a benignmodel,
a poisoned model trained from scratch, and a poisoned model
trained via fine-tuning. For the latter two, we use the same poison
configuration as in Figure 3 and poison 500 concepts. Here we con-
sider two concepts, “apple” (poisoned) and “turtle” (unpoisoned),
where the training data of “apple” contains poisoned samples tar-
geting “hat” and that of “turtle” contains no poisoned data. For both
training scenarios, the models implode – the cross-attention maps

2Following [41], we compute the semantic relationship between two concepts by
measuring the 𝐿2 distance between their CLIP-based textual embeddings. Concepts
with a distance above 4.8 are considered semantically unrelated. The threshold of 4.8
comes from empirical measurements of 𝐿2 distances between synonyms [41].

Figure 4: Model implosion in different training scenarios –
images and cross-attention maps generated for apple (poi-
soned to hat) and turtle (unpoisoned).

for both poisoned and unpoisoned concepts resemble scattered
random noise, with no obvious objects present.

3.3 Key Takeaways
By visually inspecting the token-specific cross-attention maps, we
illustrate the behavior of poisoned models under different scenarios,
including model implosion. Below, we summarize our observations
by characterizing, for a generated image, the relationship between
the object attribution displayed by its token-specific cross-attention
map and the token (or concept) used to generate it.

Given a concept C, let G(C) represent the images generated
by a model G using text prompts containing C. Let 𝑂 (G(C), C)
represent the object attribution of the token-specific cross-attention
maps, with the token being C. Thus a well-trained, benign model
G𝑏𝑒𝑛𝑖𝑔𝑛 should learn the correct textual condition on any C:

𝑂 (G𝑏𝑒𝑛𝑖𝑔𝑛 (C), C) = C
When a model G𝑝𝑜𝑖𝑠𝑜𝑛 is “lightly poisoned” with a small number
of poisoned concepts, we observe

𝑂 (G𝑝𝑜𝑖𝑠𝑜𝑛 (C), C) =
{
C if C is not poisoned
C𝑡𝑎𝑟𝑔𝑒𝑡 if C is poisoned

where C𝑡𝑎𝑟𝑔𝑒𝑡 is the target concept for a poisoned concept C. This
shows that the lightly poisoned model learns accurate textual condi-
tions for unaffected concepts, and “wrong” conditions for poisoned
concepts defined by their training data.

Finally, an imploded model G𝑖𝑚𝑝𝑙𝑜𝑑𝑒 learns highly distorted
textual conditions on generic concepts, whether they are poisoned
or not. One often cannot tell the exact object attribution from token-
specific cross-attention maps, i.e. with high probability,

𝑂 (G𝑖𝑚𝑝𝑙𝑜𝑑𝑒 (C), C) = undefined.
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4 AN ANALYTICAL MODEL ON POISONED
GENERATIVE MODELS

Motivated by the empirical findings in §3, we develop an analyt-
ical model to study the influence of poisoned training data on
text-to-image generative models. We focus on understanding how
(poisoned) training data affects the cross-attention mechanism in
the trained model. However, practical implementations of cross-
attention use complex, model-specific architectures [19, 60], making
direct modeling difficult.

To develop a viable formal analysis with broader applicability,
we hypothesize that the practical process of cross-attention learn-
ing can be modeled as the abstract task of supervised graph
alignment. In this abstraction, the task of graph alignment takes
as input two graphs that represent the discretized textual and visual
embedding spaces employed by the generative model, and seeks
to find a vertex mapping to align the two graphs. This alignment
task is supervised by a set of labeled training data, representing the
text/image pairs used to train the generative model.

Using this abstraction, we can now indirectly model the impact
of (poisoned) training data on generative models in the formal
framework of supervised graph alignment. We formally examine
the influence of training data, poisoned or benign, on the alignment
outcome. Our analysis helps form a comprehensive explanation of
poisoning attacks against text-to-image generative models, includ-
ing those proposed by prior work [41].

Analysis Overview. We organize our analysis as follows:

• In §4.1, we describe the abstract model that maps cross-attention
learning as the task of supervised graph alignment. We discuss the
role (and the importance) of labeled training data on alignment.

• In §4.2, we propose a new metric, Alignment Difficulty (AD), to
evaluate alignment for a given set of training data. Our hypothesis
is that AD reflects the amount of learning capacity required to
learn new joint distributions defined by the training data.

• In §4.3, we study the behavior of AD when one or many concepts
are poisoned. We formally prove that AD increases with the num-
ber of concepts poisoned𝐶𝑃 , and develop a conjecture that as AD
grows, the alignment task becomes exceedingly challenging for
any practical model. This produces a highly distorted mapping
and induces model implosion.

• In §4.4, we discuss the limitations of our analytical model and
potential extensions.

Verifying the Analytical Model. Later in §5 we perform empir-
ical experiments to verify our analytical model by measuring the
correlation between AD (computed directly on the training data)
and the performance of generative models. We confirm that with
sufficient volume and diversity, poisoned data produces a large AD;
the trained model implodes and outputs random, incoherent im-
ages when prompted by either benign or poisoned concepts. These
conclusions also verify and more importantly, explain the empirical
takeaways summarized in §3.3.

4.1 Modeling Cross-Attention Learning as
Supervised Graph Alignment

Our Intuition. From training data, generative models learn
textual conditions using the cross attention mechanism in the U-
Net [34]. The implementation of cross attention is complex. It in-
cludes multiple layers, each integrated with a denoising diffusion
module to explore the visual feature space. Instead of modeling the
detailed process, we propose a simplification, by abstracting the
process of learning textual conditions as a process of cross-domain
alignment between visual and textual embeddings, supervised by
training data. Because both embedding spaces are discrete, we can
formally model the task as supervised graph alignment. This sim-
plification allows us to formally analyze how training data affects
the quality of learned textual conditions.

Definition: Supervised Graph Alignment. Consider two large
graphs, G𝑡𝑥𝑡 and G𝑖𝑚𝑔 . Let G𝑡𝑥𝑡 be a discrete representation of the
textual embedding space used by the generative model, where each
vertex corresponds to a distinct textual embedding. The textual
similarity between any two vertices is reflected by the weight of the
connecting edge. Similarly, G𝑖𝑚𝑔 represents the visual embedding
space, where each vertex is the visual embedding of an image. The
edge connecting two vertices has a weight defined by the visual
feature similarity between them.

The task of aligningG𝑡𝑥𝑡 andG𝑖𝑚𝑔 is defined as learning a proper
mapping function, so that for any vertex in G𝑡𝑥𝑡 , one can find its
coupling3 We also assume that each unique 𝑥 in G𝑖𝑚𝑔 is coupled
with a unique 𝑦 in G𝑡𝑥𝑡 . vertex in G𝑖𝑚𝑔 . This mapping function (𝜃 )
serves as an abstraction of the cross-attention mechanism at run-
time, i.e. for each input textual embedding from G𝑡𝑥𝑡 , identifying
its coupling visual embedding in G𝑖𝑚𝑔 and using it to generate the
output image.

Given the complex characteristics and relationships between
the two graphs, learning a proper mapping function relies on la-
beled training data T . Let T = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1 be a collection of 𝑁 vi-
sual/textual embedding pairs, where a visual embedding 𝑥𝑖 ∈ G𝑖𝑚𝑔

is paired (or labeled) with a textual embedding 𝑦𝑖 ∈ G𝑡𝑥𝑡 . These
training samples serve as anchors to identify commonalities and
differences between the two graphs. As such, the learned mapping
function (𝜃 ) and its effectiveness depend on the configurations of
G𝑡𝑥𝑡 and G𝑖𝑚𝑔 , and more importantly, the training data T .

Note that this graph alignment task differs from traditional graph
isomorphism problems. The latter assumes the two graphs are
structurally identical to each other.

Alignment Principles and Reliance on Training Data. Lever-
aging insights from [5], we discuss two key principles for aligning
G𝑡𝑥𝑡 and G𝑖𝑚𝑔 . Both principles require guidance from labeled train-
ing data T .
• Feature-based Alignment – This alignment leverages an “initial
knowledge” on the cross-domain relationship between visual and
textual spaces. This initial knowledge is reflected by𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥,𝑦),

3Consider a probability distribution 𝑃𝑖𝑚𝑔 for vertices in G𝑖𝑚𝑔 and a probability
distribution 𝑃𝑡𝑥𝑡 for vertices in G𝑡𝑥𝑡 . A valid coupling between G𝑖𝑚𝑔 and G𝑡𝑥𝑡

is any joint distribution of 𝑃𝑖𝑚𝑔,𝑡𝑥𝑡 such that
∫
𝑡𝑥𝑡

𝑃𝑖𝑚𝑔,𝑡𝑥𝑡 (𝑥, 𝑦) = 𝑃𝑖𝑚𝑔 (𝑥 ) and∫
𝑖𝑚𝑔

𝑃𝑖𝑚𝑔,𝑡𝑥𝑡 (𝑥, 𝑦) = 𝑃𝑡𝑥𝑡 (𝑦) . For simplicity, our analysis assumes that both 𝑃𝑖𝑚𝑔

and 𝑃𝑡𝑥𝑡 are discrete uniform distributions.
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Figure 5: Illustration of G𝑖𝑚𝑔 and G𝑡𝑥𝑡 and subgraphs GT
𝑡𝑥𝑡 ,

GT
𝑖𝑚𝑔

from the labeled training data T . Each vertex represents
an embedding. Each edge represents high similarity between
vertices. Low similarity edges are omitted.

a generic metric for measuring the cross-domain distance between
a visual embedding 𝑥 and a textual embedding 𝑦. Intuitively, the
alignment should pair 𝑥 with some 𝑦 close to 𝑥 rather than some
𝑦′ distant from 𝑥 . With access to an accurate 𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥,𝑦) on all
possible (𝑥,𝑦) pairs, the alignment task can be easily solved with-
out training data, i.e. for an input𝑦∗, 𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥,𝑦∗).
However, since a generic 𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥,𝑦) is likely a noisy (and occa-
sionally erroneous) estimation of the cross-domain distance, the
alignment needs to leverage labeled training data T to refine this
“initial knowledge” and learn the desired mapping function.

• Structure-based Alignment – The alignment process can also lever-
age topological graph structures. In particular, if two visual ver-
tices 𝑥1 and 𝑥2 are close (or distant) within G𝑖𝑚𝑔 , their coupling
vertices 𝑦1 and 𝑦2 should ideally be close (or distant) within G𝑡𝑥𝑡 ,
i.e. 𝐷𝑖𝑚𝑔 (𝑥1, 𝑥2) ∝ 𝐷𝑡𝑥𝑡 (𝑦1, 𝑦2). Here 𝐷𝑖𝑚𝑔 (.) measures the nor-
malized visual-domain distance between two visual embeddings
while𝐷𝑡𝑥𝑡 (.) is its counterpart in the textual domain. Again, given
the inherent complexity and scale of visual and textual domains,
𝐷𝑖𝑚𝑔 (.) and 𝐷𝑡𝑥𝑡 (.) only provide noisy estimates. Thus they are
employed in conjunction with T to learn the desired mapping.

4.2 Alignment Difficulty (AD)
We now present a formal analysis on the impact of training data T
on alignment performance. Given the complexity of G𝑡𝑥𝑡 and G𝑖𝑚𝑔 ,
directly modeling or evaluating alignment outcomes is challenging.
Instead, we propose an indirect metric, Alignment Difficulty (AD),
to estimate the hardness of the alignment task for a given T . Our
hypothesis is that AD reflects the amount of learning capacity
necessary to learn the new cross-domain knowledge between the
two embedding spaces provided by T . Therefore, the larger the
AD, the harder it is to find a practical model carrying such learning
capacity, and the poorer the alignment performance.

Following this consideration, we define AD as the distance be-
tween two graphs defined by the training data T (GT

𝑡𝑥𝑡 and GT
𝑖𝑚𝑔

),
which are the subgraphs of G𝑡𝑥𝑡 and G𝑖𝑚𝑔 , i.e. GT

𝑖𝑚𝑔
⊂ G𝑖𝑚𝑔 ,

GT
𝑡𝑥𝑡 ⊂ G𝑡𝑥𝑡 . As illustrated by Figure 5, GT

𝑖𝑚𝑔
only contains visual

vertices included in T and so does GT
𝑡𝑥𝑡 . In this figure, we illustrate

a sample cross-domain similarity binding between a visual embed-
ding 𝑥 and a textual embedding 𝑦, reflecting the initial knowledge

used by feature-based alignment. We also include a sample struc-
ture similarity binding between two visual and textual edges, used
by structure-based alignment.

We formulate AD as the amount of learning effort required to up-
date the alignment task’s initial knowledge (defined by 𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (.),
𝐷𝑖𝑚𝑔 (.) and 𝐷𝑡𝑥𝑡 (.)) to match the joint distribution displayed by
training data T . Assuming the alignment process considers both
feature- and structure-based principles, we calculate AD as the
weighted sum of distances between the two subgraphs, GT

𝑡𝑥𝑡 and
GT
𝑖𝑚𝑔

, under both principles:

𝐴𝐷 (T ) = 𝛼

𝑁
·

∑︁
(𝑥𝑖 ,𝑦𝑖 ) ∈T

𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥𝑖 , 𝑦𝑖 ) +

1 − 𝛼

𝑁 2 ·
∑︁

(𝑥𝑖 ,𝑦𝑖 ),(𝑥𝑘 ,𝑦𝑘 ) ∈T

��𝐷𝑖𝑚𝑔 (𝑥𝑖 , 𝑥𝑘 ) − 𝐷𝑡𝑥𝑡 (𝑦𝑖 , 𝑦𝑘 )
�� (1)

Here 𝛼 (0 ≤ 𝛼 ≤ 1) is an alignment parameter, representing the
weight placed on the feature-based alignment. For clarity, we hereby
refer to the unweighted first and second terms in equation (1) as
feature AD and structure AD, respectively. The three distance met-
rics, 𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (.), 𝐷𝑖𝑚𝑔 (.) and 𝐷𝑡𝑥𝑡 (.), are generic distance metrics
cross-domain, within the visual domain, and within the textual
domain, respectively. With the goal of making AD model-agnostic,
we compute AD assuming G𝑡𝑥𝑡 and G𝑖𝑚𝑔 are constructed from
CLIP embeddings [32] (details in §5.1).

We note that our AD metric is inspired by the Fused Gromov-
Wasserstein (FGW) distance [5, 48] that measures the optimal trans-
port between two structured graphs in absence of any labeled train-
ing data. We adapt the formulation of FGW to calculate the graph
distance when the alignment is guided by the labeled training data
T . This supervised setting also reflects the training process of text-
to-image generative models.

Training-from-scratch vs. Fine-tuning. It is clear that equa-
tion (1) applies to the training-from-scratch scenario. To compute
AD when T is used to fine-tune a (benign) base model, a naive ap-
proximation is to mix T with the training data of the base model T0
and compute𝐴𝐷 (T ∪T0). Since |T0 | ≫ |T |, fine-tuning data would
have negligible effect on 𝐴𝐷 (T ∪ T0). Instead, we argue that this
approximation is inaccurate because the impact of fine-tuning data
on AD should reflect their impact on model weights. Fine-tuning a
model does not start with randomly initialized weights, but with
those already learned from T0 and modifies them with new data T .
In the corresponding graph alignment, this means that an existing
mapping function (𝜃T0 ) is being modified using T .

Assuming |T | is sufficiently large, we propose to estimate the
AD of fine-tuning a benign base model by a weighted sum:

(1 − 𝜆) · 𝐴𝐷 (T0) + 𝜆 · 𝐴𝐷 (T ) (2)

where 0 < (1 − 𝜆) < 1 is a weight memorization factor. Given a
base model (trained on T0), we can study the impact of T that is
used to fine-tune this base model by examining the behavior and
trend in 𝐴𝐷 (T ). We note that this estimation only applies to the
scenario of fine-tuning a benign model with poisoned training data.
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4.3 Impact of Poisoned Training Data
Next, we formally study the impact of poisoning attacks by exam-
ining 𝐴𝐷 of the training data T . We study the poisoning scenarios
described by prior work [41]: poisoning a single concept and poison-
ing multiple concepts simultaneously. As defined in §3, a concept
refers to a common keyword found in prompts that describes the
object(s) in the image, e.g. “bird”, “cat”, “city” [41]. For all the sce-
narios examined below, the training data T contains both benign
and poisoned data.

Scenario 1: Poisoning a Single Concept.
Let 𝑝 be the chosen concept to poison (e.g. “bird”). Let 𝑛𝑝 be the
number of data samples whose prompts contain 𝑝 in the training
dataset T . Let𝑚𝑝 be the number of poisoned samples among them,
whose textual labels contain 𝑝 (e.g. “bird”) but are paired with
images of the target concept 𝑡 (e.g. “chandelier”). In this case, the
overall poisoning ratio 𝜌 is𝑚𝑝/𝑁 (𝑁 = |T |). We assume 𝑁 is large
thus 𝜌 ≤ 𝑛𝑝

𝑁
≪ 1. For example, prior work [41] assumes 𝜌 ≤ 0.01.

When we replace𝑚𝑝 benign samples with poisoned samples,
the maximum change introduced to 𝐴𝐷 can be estimated by

𝛼 · 𝜌 · Δ𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 + 2(1 − 𝛼) · 𝜌 ·
(
𝑛𝑝 + 𝑛𝑡

𝑁
− 𝜌

)
· Δ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (3)

where 𝑛𝑡 (≪ 𝑁 ) is the number of training samples of concept 𝑡 ,
Δ𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (≤ 1) is the maximum increase in 𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (.) a poisoned
sample can introduce beyond its benign version, and Δ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒
(≤ 1) is the maximum increase in structure disparity a poisoned
sample can introduce. Since 𝑛𝑝 + 𝑛𝑡 ≪ 𝑁 and 𝜌 << 1, the second
term (representing structure AD) is negligible compared to the first
term. As such, the maximum increase in AD is bounded by a small
value 𝛼 · 𝜌 . The detailed derivation of (3) is shown in Appendix 8.3.

This analysis shows that, due to the low proportion of poisoned
data in the dataset, poisoning a single concept does not cause no-
ticeable changes to AD. However, this does not imply that the
poisoning attack fails. Rather, it indicates that the difficulty in learn-
ing the alignment of T is similar to that of its benign counterpart.
A model should also achieve similar effectiveness in learning these
two datasets. Therefore, with sufficient poisoned samples of 𝑝 , the
textual embeddings of 𝑝 should now align with the visual embed-
dings of 𝑡 , while the unpoisoned concepts are not affected.

Conjecture 4.1 (Effectiveness of Poisoning a Single Concept).
Poisoning a single concept with very limited poisoned data has little
impact on AD. Thus, the alignment task can learn the joint distribution
displayed by the poisoned training data as effectively as it learns the
benign version.

This explains the results displayed in Figure 2 (§3.2) and the sum-
mary on 𝑂 (G𝑝𝑜𝑖𝑠𝑜𝑛 (C), C) (§3.3). A prompt on the poisoned con-
cept generates misaligned images (representing its target concept),
while prompts on unpoisoned concepts produce correct images.

Scenario 2: Poisoning Multiple Concepts Simultaneously.
Now consider the case where 𝐶𝑃 concepts are poisoned, and each
poisoned concept 𝑝 has𝑚 poisoned samples in the training data
T . Now the overall poisoning ratio becomes 𝜌 =

𝐶𝑃 ·𝑚
𝑁

and grows
linearly with𝐶𝑃 . For example, prior work [41] assumes𝑚 = 40 and
𝑁 = 50, 000. Thus 𝜌 = 𝐶𝑃 · 0.0008.

For feature AD, it is easy to show that the increase caused by
poisoned samples is bounded by𝛼 ·𝜌 ·Δ𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 , which scales linearly
with𝐶𝑃 . In parallel, the inclusion of𝐶𝑃 ·𝑚 poisoned samples across
𝐶𝑃 concepts could introduce structural changes to the two graphs
GT
𝑡𝑥𝑡 and GT

𝑖𝑚𝑔
and thus change structure AD. The change depends

on the composition of poisoned samples among poisoned concepts
and their relationship to all other benign samples.

Without loss of generality, our formal analysis considers the
following simplified setting. Benign samples of different concepts
are well-separated in both visual and textual embedding spaces, i.e.
𝐷𝑖𝑚𝑔 (𝑥1, 𝑥2) = 1 if 𝑥1, 𝑥2 are of different concepts, and 0 otherwise;
𝐷𝑡𝑥𝑡 (𝑦1, 𝑦2) = 1 if 𝑦1, 𝑦2 are different concepts, and 0 otherwise.

We prove that when poisoning a fixed number of training sam-
ples in each poisoned concept, AD increases with the number of
concepts poisoned (𝐶𝑃 ).

Theorem 4.2 (Benefits of Poisoning More Concepts). When benign
samples of different concepts are well-separated in both visual and
textual embedding spaces, there exists a configuration of the poisoned
training data T such that AD increases with 𝐶𝑃 , the number of
poisoned concepts in T .

The proof of Theorem 4.2 is in Appendix 8.4.

Scenario 3: Model Implosion.
Since AD increases with 𝐶𝑃 , one would ask what happens to the
alignment task as 𝐶𝑃 continues to grow. As discussed earlier, AD
reflects the amount of learning capacity necessary to capture the
joint distribution displayed by the training data. Therefore, we
argue that when AD exceeds some value, the alignment task is no
longer feasible in practice. Instead, the alignment will produce a
highly erroneous mapping via “averaging”.

Here we conjecture that, when 𝐶𝑃 is sufficiently large, the poi-
soned training data T contains a significant number of “entangled”
text/image samples whose joint distribution can no longer be ac-
curately captured and learned by the alignment task. In particular,
within T , a poisoned concept 𝑝 is not only associated with its be-
nign data (i.e. visual embeddings of 𝑝) and poisoned data (visual
embeddings of 𝑡 ), but also data from other concepts whose textual
or visual embeddings are entangled with those of 𝑝 or 𝑡 .

Therefore, as 𝐶𝑃 increases, the level and scale of the intra- and
inter-graph entanglements also increase. Beyond a certain point,
each concept 𝑐 , whether poisoned or not, becomes deeply entangled
with multiple other concepts, making the corresponding joint dis-
tributions too complex for the alignment model to accurately learn.
In this case, the model tends to learn a mapping as some weighted
combinations of the entangled data, often producing incorrect or
“undefined” visual embeddings with minimal informative content.
This is reflected by our empirical observations in §3.2 where cross-
attention maps appear as “scattered random noise” (see Figure 4
and the observation in §3.3).

Conjecture 4.3 (Model Implosion). When 𝐶𝑃 is sufficiently large,
AD of the poisoned training data T exceeds the learning capacity of
the alignment model. Thus the learned alignment for a textual embed-
ding becomes a weighted average of the associated visual embeddings
introduced by T . This could produce “undefined” visual embeddings
with minimal informative content.
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4.4 Limitations of Our Analysis
By abstracting the cross-attention mechanism in diffusion models
as a task of supervised graph alignment, we develop an analytical
model to model (and explain) behaviors of image generative models
under poisoning attacks. However, employing this abstraction also
presents several limitations for our work.

Find Exact AD for Model Implosion. Our analysis cannot pin-
point a specific threshold on AD, beyond which the model implodes.
This threshold depends on many empirical factors, including model
architecture and embedding space configurations.

Compare AD across Tasks. The absolute value of AD depends
on the configurations of the visual and textual feature spaces, as
well as the output distributions of multiple distance metrics, which
differ across task datasets. Consequently, one should not directly
compare absolute AD values across different task datasets directly.

Fine-tuning Poisoned Models. Our equations (1) and (2) only
apply to scenarios where a benign base model is fine-tuned with
poisoned training data. We leave the task of computing AD for
fine-tuing an already poisoned base model to future work.

5 VALIDATING THE ANALYTICAL MODEL
We validate our analytical model through empirical experiments,
exploring the relationship between AD (computed directly from the
training data) and the performance of trained generative models.
We perform comprehensive experiments by varying datasets, diffu-
sion model architectures, VAEs, training scenarios (training-from-
scratch/fine-tuning), and poison composition (clean-label/dirty-
label). Besides validation of analytical model, we also identify crit-
ical and unforeseen findings from these experiments, extending
beyond those in §3 that motivated our analytical study.

5.1 Experimental Setup

Datasets. Our experiments focus on LAION-Aesthetics [37], the
preferred dataset for training and studying diffusion models due
to its substantial size and diversity. LAION-Aesthetics includes 120
million high-quality text/image pairs, covering more than 10,000
object nouns. We use two secondary datasets, CIFAR10 [21] and
ImageNet [9], to further validate our analysis. All three datasets
are publicly available with no report of CSAM.

In the following, we describe the experimental setup for LAION-
Aesthetics experiments. We configure CIFAR10 and ImageNet ex-
periments using a similar methodology, with slight modifications
since they target classification tasks and contain images of lower
quality and diversity (details in §5.4).

Model Training. We consider both fine-tuning and training-
from-scratch scenarios. For fine-tuning, we consider three pre-
trained base (benign) models: SD1.5, SD2.1, and SDXL models [34].
Each of these high-performance models is trained on more than
170M text/image pairs. We fine-tune each base model with 50K
text/image pairs, which include both benign samples randomly
sampled from LAION-Aesthetics and poisoned samples (discussed
below). We follow the released training method for Stable Diffu-
sion4 and the hyperparameters described by [34]. We also train
4https://github.com/CompVis/stable-diffusion

latent diffusion models from scratch with 150K text/image pairs,
following the same data distribution used by our fine-tuning ex-
periments. When training poisoned LAION-Aesthetics models, we
follow [41] to set the learning rate to 4e-5.

Configuring Poisoned Data. We adopt a methodology consis-
tent with prior work [41]. We consider poisoning common concepts
by randomly selecting from a pool of 500 frequently used nouns that
describe objects. Here we compute word frequency from prompts in
LAION-Aesthetics, and avoid generic words like “photo” or “picture”
that are present in most prompts.

We consider both dirty-label and clean-label poisoning attacks.
To poison a concept 𝑝 , we first choose its target concept 𝑡 randomly
(𝑡 ≠ 𝑝). We generate a dirty-label poison image 𝑥𝑡 by prompting
SD1.5 with “a photo of 𝑡 .” We pair 𝑥𝑡 with a text prompt 𝑦𝑝 on con-
cept 𝑝 , extracted from the LAION-Aesthetics dataset. Thus (𝑥𝑡 , 𝑦𝑝 )
is a dirty-label poisoned sample for concept 𝑝 . Next, to build clean-
labeled poisons, we generate clean-label poison images using [41]’s
released code5. We perturb an image 𝑥𝑝 from poisoned concept 𝑝
towards some image 𝑥𝑡 of target 𝑡 in the visual embedding space.
This produces a perturbed image 𝑥 ′𝑝 . We extract a text prompt 𝑦𝑝
on concept 𝑝 , and use (𝑥 ′𝑝 , 𝑦𝑝 ) as a clean-label poisoned sample.
The final training data of size 𝑁 consists of𝑚 = 0.0008 ·𝑁 poisoned
samples from each poisoned concept and 𝑁 −𝑚 ·𝐶𝑃 benign samples
randomly selected from LAION-Aesthetics.

Computing AD. Given training data T , we calculate its AD fol-
lowing equation (1). Since training samples are raw text/image pairs
while AD operates on visual/textual embeddings, we first apply a
universal feature extractor E(.) [32] to convert raw samples into
embeddings. Let 𝑑𝑐𝑜𝑠 (.) be the cosine distance, 𝑥 be the image, and
𝑦 be the text prompt. We have 𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥,𝑦) = 𝑑𝑐𝑜𝑠 (E(𝑥), E(𝑦)),
𝐷𝑖𝑚𝑔 (𝑥1, 𝑥2) = 𝑑𝑐𝑜𝑠 (E(𝑥1), E(𝑥2)),𝐷𝑡𝑥𝑡 (𝑦1, 𝑦2) = 𝑑𝑐𝑜𝑠 (E(𝑦1), E(𝑦2)).
We normalize each metric into [0, 1].

We set 𝛼 = 0.8 when computing AD. This choice is informed by
prior work [5] that empirically shows 𝛼 = 0.8 to be superior to other
values for computing graph optimal transport. Existing studies
(e.g. [26]) also suggest that feature-based alignment holds greater
significance than structure-based alignment, because it captures
more meaningful similarities between nodes across graphs (text vs.
image in this case). For reference, we also provide AD values for
𝛼 = 0.5. The two 𝛼 values lead to the same conclusion.

Evaluating Generative Models. To evaluate trained generative
models, we prompt them to generate images and then evaluate
these images. We use the default parameters for generation with a
guidance scale of 7.5 and 50 diffusion steps. We evaluate LAION-
Aesthetics models using prompts on a collection of 1000 commonly
used concepts. This pool consists of the aforementioned pool of
500 nouns to select poisoned concepts and another pool of 500
frequently used nouns. The concepts in these two pools do not
overlap, and 78.4% of the concepts in the second pool do not have
any synonyms [2] in the first pool. Following existing works [30,
33, 34, 36], we prompt each generative model with 1000 concepts,
using the prompt of “a photo of C”, and collect 5 generated images
per concept. We report the generation performance on poisoned
and clean (unpoisoned) concepts.

5https://github.com/Shawn-Shan/nightshade-release

https://github.com/CompVis/stable-diffusion
https://github.com/Shawn-Shan/nightshade-release
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𝐶𝑃 : # of Feature Structure AD AD Generation Accuracy Generation Aesthetics Model
Poisoned AD AD (𝛼 = 0.8) (𝛼 = 0.5) All Clean Poisoned All Clean Poisoned Utility
Concepts Concepts Concepts Concepts Concepts Concepts Concepts

benign 0 0.514 0.1493 0.441 0.331 0.90 0.90 - 0.906 0.906 - 0.884
dirty-label 100 0.551 0.1475 0.470 0.349 0.654 0.656 0.638 0.849 0.85 0.838 0.576
poison 250 0.608 0.1463 0.515 0.377 0.433 0.435 0.427 0.817 0.815 0.824 0.416

500 0.703 0.1440 0.592 0.424 0.357 0.34 0.374 0.766 0.761 0.771 0.356
clean-label 100 0.520 0.1478 0.446 0.334 0.726 0.717 0.81 0.849 0.851 0.834 0.663
poison 250 0.531 0.1445 0.453 0.338 0.62 0.625 0.604 0.782 0.781 0.794 0.552

500 0.547 0.1369 0.465 0.342 0.566 0.548 0.584 0.721 0.727 0.715 0.473

Table 1: AD and model performance, when fine-tuning the SD1.5 base model using either benign or poisoned training data,
under dirty-label and clean-label poisoning attacks.

We evaluate the generated images using three metrics:
• GenerationAccuracymeasures the degree of alignment between
the generated images and their input prompts;

• Generation Aesthetics measures visual aesthetics of the gener-
ated images, i.e. harmony and appeal of visual elements that affect
perception and interpretation of an image and objects within.

• Model Utility uses both prompt alignment and visual aesthet-
ics of the generated images to assess model usability. A detailed
explanation of including this metric can be found in Appendix 8.1.
We compute generation accuracy by studying the statistical dis-

tribution of the CLIP score [32] from generated images and corre-
sponding prompts. While the CLIP score estimates the resemblance
between an image and a text, there is no known threshold for “ac-
curacy”. After examining the CLIP score distribution from a benign
generative model (SD1.5), we opt to use 0.236, corresponding to
its 10𝑡ℎ percentile value, as the accuracy threshold. We manually
inspect the text/image pairs used in our experiments to verify it
is a fair assessment of generation accuracy for these models. For
reference, the mean and standard deviation of the CLIP score for the
benign SD1.5 model is 0.273 ± 0.0276. Figure 10 and Appendix 8.1
illustrate the effectiveness of this accuracy measure.

We compute the visual quality of the generated images using
the CLIP aesthetics score [37] and apply the threshold of 6.5 as
suggested by [37]. Recent works have validated the use of CLIP
aesthetics to assess image visual quality [16, 53, 55], whereas alter-
native measures such as fréchet inception distance (FID) are shown
to be ineffective in measuring the visual quality of generated im-
ages [18, 22, 31].

With these in mind, the exact performance metrics are as follows:
• Generation Accuracy : % of generated images with CLIP> 0.236,
• Generation Aesthetics : % of images with aesthetics> 6.5,
• Model Utility : % of images with CLIP> 0.236 and aesthetics> 6.5.

5.2 Main Results of LAION-Aesthetics
Experiments

In this section, we report the key results from fine-tuing the
pretrained SD1.5 model. We discuss the results of fine-tuning
other base models and training models from scratch later in §5.3.

We experiment with both single-concept poisoning (𝐶𝑃 = 1)
and many-concept poisoning (𝐶𝑃 ≥100). Results on single-concept
poisoning are as expected: they barely changed AD, successfully

manipulated image generation on poisoned concepts, but had mini-
mal influence on unpoisoned concepts. The detailed result can be
found in Appendix 8.2.

We now focus on many-concept poisoning. We consider a very
weak poisoning scenario, by limiting the number of poisoned train-
ing samples per poisoned concept (𝑚𝑝 ) to 40. The overall poison
ratio on the fine-tuning data T is 𝐶𝑃 · 0.08%. We experiment with
both dirty-label and clean-label attacks and list their results sepa-
rately. As expected, since they produce different types of poisoned
data, their AD values are different.

Table 1 presents the overall result, in terms of AD and detailed
model performance under different training data configurations.
We make the following key observations, which apply to both dirty-
and clean-label poisoning attacks.

• AD increases with the number of poisoned concepts (𝐶𝑃 ), domi-
nated by the increase in feature AD.

• The model performance declines with 𝐶𝑃 , for both poisoned and
clean (unpoisoned) concepts.

• There is a strong connection between AD and the performance of
the poisoned generative model, better illustrated by Figure 6.

• The effect of model implosion is evident6 and its severity intensi-
fies as 𝐶𝑃 increases.

We make further observations on dirty and clean-label attacks.

Dirty-Label Attacks. As 𝐶𝑃 increases, the feature AD displays
a strong increase, since dirty-label samples generally display larger
𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (.) values. Yet the impact on structure AD is less visible
and displays a weak, decreasing trend with𝐶𝑃 . We think this comes
from two factors. First, since both the poisoned concepts and their
targets are randomly chosen, the poisoned data introduces struc-
tural changes in various uncoordinated directions, which can either
amplify or cancel each other’s effects, resulting in a less noticeable
impact on structure AD. Second, the structural properties of benign
training samples are already complex. The poisoned data introduces
different but relatively stronger associations between text prompts
and images, which slightly reduces structure AD. Nevertheless, as
feature AD consistently outweighs structure AD, the overall AD
continues to grow as 𝐶𝑃 increases.

6As an additional verification, we manually inspect the cross-attention map for the
generated images, and verify that the majority of them follow the “scattered random
noise” pattern seen in Figure 4.
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Figure 6: Strong correlation between AD and generation per-
formance of fine-tuned SD1.5 models, for both dirty-label
and clean-label poisoning attacks.

Word Frequency Ranks of AD Model Utility
𝐶𝑃=500 Poisoned Concepts (𝛼 = 0.8) (500 Benign Concepts)

1-500 0.592 0.375

1501-2000 0.599 0.392

Table 2: AD and model utility of two fine-tuned SD1.5mod-
els, by poisoning top 500 frequently used concepts (1-500), or
those ranked 1501-2000. We test the models with 500 unpoi-
soned concepts ranked 501-1000 in frequency.

Clean-Label Attacks. Another key observation is that concur-
rent clean-label poisoning attacks can lead to model implosion, but
at a slower pace (i.e., it requires poisoning more concepts) com-
pared to its dirty-label counterpart. This can be explained by its
AD value. For the same 𝐶𝑃 value, AD of clean-label poisoned data
is lower than that of dirty-label poisons (see Figure 6). This is as
expected because these perturbed images carry smaller 𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 .
On the other hand, this property also makes them stealthy and hard
to detect as they “blend” into benign samples.

We note that this finding also suggests the potential of improving
the design of stealthy, clean-label attacks, including selecting target
concepts and the images to perturb, so that their attack potency
can further approach that of dirty-label attacks. We leave this to
future work.

Poisoning Less Popular Concepts. So far, our experiments
have selected poisoned concepts from the top 500 frequently used
concepts. We also examine the poison effect of poisoning less pop-
ular concepts. Specifically, we find 500 concepts whose word fre-
quency ranking is between 1500 and 2000, and produce dirty-label
poisoned samples as before. Each target concept is also randomly
chosen from the same pool. We then evaluate the trained model
using 500 concepts whose word frequency ranks between 501 and
1000, and are considered benign (unpoisoned) for both models. In
this case, the training data’s AD is 0.599 (nearly identical to that of
poisoning top 500 concepts), and so is the model utility on these
benign concepts (0.375 vs. 0.392). This further demonstrates the
generality of model implosion and the strong tie between AD and
model performance.

Impact on More Complex Prompts. We also test the trained
generative models using input prompts containing multiple con-
cepts, e.g. “a photo of book under the clock” and “a photo of dog
wearing hat.” Here we study multiple cross-attention maps, one
per concept in the input prompt. As shown in Figure 7, when a

Figure 7: Generated images and token-specific cross-
attention maps when prompted with multiple concepts.

model implodes, the token-specific cross-attention maps (target-
ing different concepts) become scattered noise. Moreover, these
token-specific maps are highly similar, indicating that the cross-
attention module can no longer distinguish individual concepts
in the prompt. This suggests that model implosion can scale to
complicated prompts.

5.3 Additional LAION-Aesthetics Experiments
We also perform ablation studies by varying training scenarios and
base SD models used for fine-tuning.

Varying Base Diffusion Model. Besides SD1.5, we also exper-
iment with fine-tuning SD2.1 and SDXL [31, 44, 45] models with
poisoned training data. As discussed in §2.1, SD2.1 uses the same
VAE as SD1.5 but a different decoder fine-tuned on high-quality im-
ages, while SDXL retrains the VAE on new, high-quality images [31].
Since our empirical calculation of AD uses the same universal en-
coder, the AD values for both are the same as those for SD1.5when
using the same training data.

Results in Table 3 show that poison is more effective against
SD2.1 and SDXL models, leading to a faster degradation in model
utility and a faster pace into model implosion. Interestingly, for
poisoned SD2.1 models, the generation aesthetics drops dramat-
ically to below 30%. A closer look reveals that many generated
images are just a single color block (visual examples are shown
in Appendix 8.5). This also confirms that a metric combining both
CLIP score and aesthetics, i.e. model utility, is more reliable.

We suspect this fast degradation is because SD2.1 and SDXL ’s
VAE encoder and/or decoder are trained on higher quality images,
leading to overfitting or lack of generalizable interpretation on
the visual embeddings [31, 44]. Thus when an imploding model
produces undefined embeddings, the decoder is unable to produce
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𝐶𝑃 : # of Base AD Generation Accuracy Generation Aesthetics Model
Poisoned Model (𝛼 = 0.8) All Clean Poisoned All Clean Poisoned Utility
Concepts Concepts Concepts Concepts Concepts Concepts Concepts

0 SD2.1 0.441 0.912 0.912 - 0.950 0.950 - 0.891
100 SD2.1 0.470 0.854 0.854 0.850 0.288 0.288 0.290 0.181
250 SD2.1 0.515 0.814 0.827 0.776 0.279 0.282 0.269 0.170
500 SD2.1 0.592 0.715 0.740 0.690 0.286 0.307 0.266 0.116

0 SDXL 0.441 0.882 0.882 - 0.983 0.983 - 0.877
100 SDXL 0.470 0.564 0.565 0.558 0.744 0.741 0.774 0.495
250 SDXL 0.515 0.519 0.520 0.516 0.738 0.737 0.742 0.456
500 SDXL 0.592 0.473 0.474 0.472 0.656 0.654 0.658 0.384

Table 3: Performance of dirty-label poisoning attacks on two additional base models, SD2.1 and SDXL.

𝐶𝑃 : # of Feature Structure AD Generation Accuracy Generation Aesthetics Model
Poisoned AD AD (𝛼 = 0.8) All Clean Poisoned All Clean Poisoned Utility
Concepts Concepts Concepts Concepts Concepts Concepts Concepts

0 0.513 0.1490 0.440 0.762 0.762 - 0.894 0.894 - 0.728
100 0.551 0.1472 0.470 0.637 0.643 0.580 0.693 0.694 0.680 0.522
250 0.608 0.1462 0.516 0.540 0.537 0.548 0.752 0.752 0.752 0.468
500 0.703 0.1437 0.592 0.518 0.516 0.52 0.772 0.771 0.773 0.478

Table 4: AD and model performance, when training latent diffusion models from scratch, under dirty-label poisoning attacks.

any useful content. Such instability issues of SD2.1 and SDXLmodels
are already documented by practitioners [35, 50] and can further
amplify the damage of model implosion.

Training-from-Scratch. Using 150K training samples constructed
from LAION-Aesthetics, we train latent diffusion models “from
scratch”. We use the same method to curate poisoned samples and
have 40 poisoned samples in each poisoned concept. Table 4 demon-
strates the same trends as those observed on fine-tuning SD1.5: (1)
AD increases with𝐶𝑃 , (2) model performance degrades with𝐶𝑃 and
there is a strong correlation between AD and model performance,
and (3) the model already shows initial symptoms of implosion
when poisoning 100 concepts.

We note that AD values computed on the larger 150K training
data are nearly identical to those in Table 1. This is because the two
datasets share almost identical joint distribution under the same
poison ratio and AD is normalized by the training data size 𝑁 .

5.4 Experiments on CIFAR10 and ImageNet
We also use two secondary datasets: CIFAR10 and ImageNet, com-
monly used by image classification tasks. Compared to LAION-
Aesthetics, these datasets have fewer images and of lower quality.
Furthermore, the size and diversity of their class labels are very
limited, with CIFAR10 having only 10 classes and ImageNet having
1,000 distinct labels (e.g. specific animal breeds rather than common
object names). Given their limited size and lack of diversity, we
only use these two datasets to confirm LAION-Aesthetics results.

Experimental Setup. For CIFAR10, we leverage its training set
of 50K images (of size 32×32) to study the scenario of training-
from-scratch. We use the latent diffusion architecture from [34]
that matches its image size. For each image, we treat its class label
as the text prompt (since each small image is dominated by the

object described by the class label). We train poisoned generative
models from scratch by randomly select𝐶𝑃 classes to poison. When
poisoning a class, we include 3000 benign samples with mislabeled
text/image pairs. Thus, each poisoned class’ training data includes
5000 benign and 3000 poisoned samples, while a benign class has
5000 benign samples. Since CIFAR10’s prompt set is too limited (i.e.
only 10 nouns), we modify AD computation to use the following
distancemetrics:𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥,𝑦) = 0 if 𝑥 is correctly labeled by𝑦, and
1 otherwise; 𝐷𝑖𝑚𝑔 (𝑥1, 𝑥2) = 𝑑𝑐𝑜𝑠 (E(𝑥1), E(𝑥2)); 𝐷𝑡𝑥𝑡 (𝑦1, 𝑦2) = 0 if
𝑦1 = 𝑦2, and 1 otherwise.

The ImageNet’s training data includes 1.2M images of size 224×224.
Using the latent diffusion architecture from [34] matching its image
size, we first train a benign generative model from scratch using
the full training set. For each image, we use BLIP conditioned on
its class label to produce its text prompt. We then construct benign
and poisoned training data to fine-tune the benign base model.
The fine-tuning dataset includes 𝑁=5K samples covering 100 ran-
domly selected classes. Each poisoned class has𝑚𝑝=50 mislabeled
text/image pairs and each benign class has 50 benign text/image
pairs randomly sampled from the training set. Consistent with the
LAION-Aesthetics experiments, we randomly select the poisoned
classes and their target classes, and vary the number of poisoned
classes (𝐶𝑃 ) from 10 to 100.

Model Evaluation. Due to the limited image size and prompt
space, we evaluate the generative models by the generation accu-
racy computed from a classifier trained to determine the class label
of each generated image. For CIFAR10, we take a Resnet18 model
pretrained on ImageNet and fine-tune the model using its benign
training data. We test each generative model by generating 1000
images per class and compute generation accuracy as % of gen-
erated images whose classification label matches its prompt. For
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𝐶𝑃 : # of Feature Structure AD Generation Accuracy
Poisoned AD AD (𝛼 = 0.8) All Clean Poisoned
Classes Classes Classes Classes

CIFAR10

0 0 0.690 0.138 0.964 0.964 -

2 0.107 0.621 0.210 0.657 0.620 0.803
4 0.194 0.637 0.282 0.60 0.679 0.471
6 0.265 0.649 0.342 0.473 0.680 0.335
8 0.324 0.658 0.391 0.452 0.874 0.414
10 0.375 0.663 0.433 0.434 - 0.434

ImageNet

0 0.411 0.126 0.354 0.735 0.735 -

10 0.465 0.127 0.397 0.717 0.724 0.013
50 0.679 0.129 0.569 0.539 0.567 0.002
100 0.935 0.126 0.773 0.171 0.190 0.000

Table 5: AD and image generation accuracy of models trained
on CIFAR10 and ImageNet.

ImageNet, we take the pretrained ResNet50 model and test each
model by generating 100 images for each of the 1000 classes, and
report their classification accuracy.

Results. Table 5 lists the AD values and the classifier-based gen-
eration accuracy for CIFAR10 and ImageNet models. We include
results for poisoned and clean (unpoisoned) classes separately. Con-
sistent with the LAION-Aesthetics experiments, we observe a strong
correlation between AD and model generation accuracy.

We observe some minor differences among the results of the
LAION-Aesthetics, CIFAR10, and ImageNet experiments, likely due
to their inherent disparities in data characteristics. For CIFAR10
(Table 5), the generation performance of benign classes is much
less affected by the growing number of poisoned classes (𝐶𝑃 ). This
indicates that when poisoning attacks are effective, they do not
cause the model to implode. This is likely because the text/image
associations in CIFAR-10’s 10-class dataset – whether benign or
poisoned – are relatively straightforward and limited in textual
diversity. Consequently, a standard latent diffusion model with
cross-attention layers can effectively learn these associations. On
the other hand, the generation accuracy, measured by the label
classification accuracy, can be volatile across the 10 classes. This
is because these 10 classes are known to display large inter-class
discrepancy for accuracy and robustness [1, 47].

For ImageNet (Table 5), where the prompt space is 100 times
larger than that of CIFAR10, we observe the phenomenon of model
implosion when 𝐶𝑃 goes beyond 50. We further confirm this ob-
servation by studying the generated images and their token-based
cross-attention maps. Figure 8 plots examples of generated im-
ages for two unpoisoned classes, “collie” and “perfume”, and their
token-based cross-attention maps, as we increase𝐶𝑃 . Similar to our
LAION-Aesthetics experiments, as more classes get poisoned, the
training data introduces more complexity to the joint distribution
to be learned. Eventually, the model implodes, and the unpoisoned
classes are significantly affected.

Compared to the LAION-Aesthetics experiments, the poisoned
classes in the ImageNet experiments show significantly lower gen-
eration accuracy, because the classification accuracy metric ampli-
fies the impact on generated images that misalign with their text

Figure 8: Generated images and their token-specific cross-
attention maps for unpoisoned classes in ImageNet.

prompts. Here we do not use CLIP and aesthetic scores for evalu-
ating ImageNet models because these metrics are designed based
on LAION images and could introduce bias and errors in ImageNet
experiments due to the difference in image size and distribution.

6 ANALYSIS ON POISONING DEFENSES
In this section, we leverage our analytical framework to study the
efficacy of potential defenses against poisoning attacks. We explore
three different defense mechanisms from [41]: (1) applying image-
text alignment filtering to remove poisoned training samples, (2)
filtering out high loss training data, and (3) fine-tuning the imploded
model with only benign training data. For all these defenses, we
consider clean-label poisoning attacks.

Defense 1: Image-Text Alignment Filtering. Alignment mea-
sure has been used to detect poisoned data [58] and noisy in-
puts [4, 38, 39] in generative models. This defense uses the align-
ment (or similarity) score of each text/image pair to identify and
remove potentially poisoned samples from the training dataset.
The hypothesis is that poisoned data’s image 𝑥 and text 𝑦 are less
aligned than benign data. Thus, the model trainer could attempt
to remove poisoned data by filtering out those with low alignment
scores.

Under our analytical model, this defense can apply the alignment
score as 𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥,𝑦) in the AD computation, since removing data
samples with high 𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥,𝑦) could reduce AD. We empirically
study this filtering defense by studying the distribution of 1 −
𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥,𝑦), calculated from the CLIP score (see §5). Figure 9(a)
plots the cumulative distribution function (CDF) of the CLIP score
for both benign and poisoned training samples used in our LAION-
Aesthetics experiments. We see that since the two distributions are
similar, benign and poisoned data exhibit comparable sensitivity to
score-based filtering. For example, filtering out the lowest 50% of
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Figure 9: Cumulative distribution of (a) CLIP alignment score,
(b)𝐷𝑠 (𝑥,𝑦), across benign and poisoned training samples used
in LAION-Aesthetics experiments.

poisoned data will remove 21% of benign data. This explains why
such defense leads to limited impact, empirically verified by [41].

This analysis also suggests that attackers can try to curate more
stealthy clean-label poisoned samples (e.g. selecting the “right”
image to perturb and/or optimizing their text captions [41]) without
compromising attack potency. In parallel, the model trainer can
try to identify and apply significantly different score functions (or
classifiers) that make the score distributions of benign and poisoned
data more distinct. Yet this approach still faces the same challenge
that filtering out poisoned data may remove useful benign data.

Defense 2: Filtering High Loss Data. Like the above, another
filtering-based defense is to identify (and remove) poisoned data
that causes high model training loss. Under our analytical model,
we argue that these high-loss samples are those (𝑥,𝑦) pairs with
high individual 𝐴𝐷 (𝑥,𝑦) values, defined as

𝐴𝐷 (𝑥,𝑦) = 𝛼 · 𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥,𝑦) + (1 − 𝛼) · 𝐷𝑠 (𝑥,𝑦) (4)

where𝐷𝑠 (𝑥,𝑦) = 1
𝑁
·∑(𝑥𝑘 ,𝑦𝑘 ) ∈T

��𝐷𝑖𝑚𝑔 (𝑥, 𝑥𝑘 ) − 𝐷𝑡𝑥𝑡 (𝑦,𝑦𝑘 )
��. Intu-

itively, a poisoned sample (𝑥,𝑦) with higher 𝐴𝐷 (𝑥,𝑦) value carries
more crucial information to be learned, leading to larger loss dur-
ing alignment learning. Note that the first term 𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥,𝑦) is
the same as the above defense using CLIP alignment scores. The
second term 𝐷𝑠 (𝑥,𝑦) reflects the structure AD contributed by a
single sample (𝑥,𝑦).

For our LAION-Aesthetics experiments (§5) we find that benign
and poisoned data display nearly identical distributions on 𝐷𝑠 (𝑥,𝑦)
(Figure 9(b)). This indicates that filtering high loss data is ineffective
regardless of whether it uses 𝐴𝐷 (𝑥,𝑦), 𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥,𝑦), or 𝐷𝑠 (𝑥,𝑦)
to compute loss. This aligns with the empirical results in [41].

Defense 3: Subsequent Fine-tuning with Benign Data. When
a model implodes, a natural defense is to subsequently fine-tune
the poisoned model on benign data. Here the fine-tuning process

# of Generation Accuracy
Benign Data All Clean Poisoned
in Fine-tuning Concepts Concepts Concepts

Poisoned Model 0.566 0.548 0.584

5K 0.660 0.652 0.668
10K 0.702 0.692 0.712
20K 0.715 0.734 0.696
30K 0.733 0.718 0.748

Benign Model 0.90 0.90 -

Table 6: Generation accuracy after fine-tuning an imploded
model with benign training data.

uses benign data to update the “entangled knowledge” learned by
the model and hopes to remove the poison effect eventually.

Under this scenario, AD computation differs from Equation (1),
because the initial cross-attention knowledge (i.e. those carried by
the imploded model) is different from that captured by Equation (1).
We leave the task of computing AD in this scenario to future work.
On the other hand, by starting from entangled/distorted knowledge,
the amount of learning on alignment required by fine-tuning an
imploded model with benign data should be notably higher than
that of fine-tuning a benign model with poisoned data. As such, it
should take more fine-tuning effort and training data to bring an
imploded model back to its benign state.

We verify this hypothesis empirically by fine-tuning an imploded
SD1.5 model. Recall that this imploded model was first fine-tuned
with 50K samples, 30K of which are benign samples. Table 6 lists
the model’s generation accuracy after being fine-tuned with 5K to
30K benign samples. We observe a “diminishing return” effect after
10K samples. Even with 30K benign training data, the generative
model’s performance is still far from the original benign version.
Therefore, it is likely more efficient to revert the model to its latest
benign version recorded.

7 CONCLUSION
Our work establishes the first analytical framework to model and
study the impact of data poisoning attacks against large-scale text-
to-image generative models. By abstracting the cross-attention
mechanism in generative models as supervised graph alignment,
we formally analyze the impact of poisoned training data. Under this
framework, we identify the impact of concurrent poisoning attacks
on model behaviors, which differs from those of individual attacks.
This confirms and explains the surprising phenomenon of “model
implosion”. We validate our analytical framework with extensive
experiments and identify fresh insights on model implosion. We
further apply this framework to evaluate the efficacy of existing
poison defenses.

Moving forward, we plan to leverage this framework to iden-
tify more potent poisoning attacks against diffusion models and
their defenses, One potential direction is to design source-target
selection to improve AD. However, these strategies must also resist
defenses that filter out poison samples by detecting significant AD
contributions or reverse-engineering source-target mappings. An-
other direction is to expand our analysis to include a wider range
of training scenarios, including fine-tuning a poisoned model.
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8 APPENDIX
8.1 Effectiveness of CLIP Score and Aesthetics
As discussed in §5.1, we study the CLIP score distribution for a be-
nign generative model (SD1.5), and opt to use 0.236, corresponding
to its 10𝑡ℎ percentile value, as the accuracy threshold. We manually
inspect the image/text pairs used/generated in our experiments
to verify it is a fair assessment of generation accuracy for these
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Figure 10: Images with CLIP scores above/below 0.236 (left/right side of the dashed line). All images are generated with prompts
“a photo of C", where C is the concept specified above the image. For each row, the images are ordered in descending CLIP scores,
corresponding to less accurate depictions of the prompts. As shown in the third column, the aesthetics can aid in identifying
images that are bad quality but have CLIP scores higher than the threshold.

models. Similarly, for CLIP aesthetics, we apply the threshold of
6.5 as suggested by [37].

To illustrate our decision, Figure 10 includes the CLIP score
and the CLIP aesthetics across various images generated by both
benign and poisoned models. The CLIP score threshold of 0.236 is
illustrated by the dash line in the middle, and our CLIP aesthetics
score of 6.5 is reflected by the color of “aes=” text under each image,
where a red text highlights that the aesthetics score is less than 6.5.

Overall, we see that the CLIP score (combinedwith our threshold)
can mostly quantify the alignment (and quality) of the generated
images. Yet there are outlier cases where the CLIP score is higher
(0.249, 0.261) but the image is either misaligned with its prompt or
carries no information. These outlier cases can be detected by the
low aesthetics score.

This indicates the need for a combined evaluation metric, which
is our “model utility” metric. It counts the % of generated images
whose CLIP score and aesthetics score are both above the chosen
thresholds.

8.2 Results of Single-Concept Poisoning
We fine-tune the SD1.5 model by poisoning the training data of
a single concept, where the poison ratio is 1%. We train 5 models,
each with a different poisoned concept. We test these models by
generating images using the same set of 500 unpoisoned concepts as
discussed in §5.2. For these clean concepts, the generation accuracy
and aesthetics are high, 0.832 ± 0.018 and 0.887 ± 0.028, respectively.
But for each poisoned concept, the generation accuracy drops to
0.116 ± 0.032, while the aesthetics stays at 0.920 ± 0.107. For each
fine-tuning dataset with 1 poisoned concept, the AD is 0.4444 ±
0.0001, nearly identical to the benign version.

These results show that poisoning a single concept can barely
changeAD (thus the “learning difficulty”) and hasminimal influence

on the model’s performance on clean/unpoisoned concepts. Each
poisoned concept is effectively learned by the model, because the
model produces high-quality images that misalign with the input
prompts containing the poisoned concepts. This observation further
supports Conjecture 4.1.

8.3 Proof of Equation 3
In this section, we explain the computation of Equation 3, which
estimates the AD of a dataset with one concept poisoned. When
attacking a concept 𝑝 , we replace𝑚 data in 𝑝 with images whose
visual embeddings belong to a target concept 𝑡 . The texts of poison
data still belong to 𝑝 . Concept 𝑝 has 𝑛𝑝 data in total and concept
𝑡 has 𝑛𝑡 data in total. We examine the change in AD by studying
both the change to feature AD and the change to structure AD.

For feature AD, the change is:

feature AD of poison data - feature AD of replaced data.

This value is estimated by the feature AD of poison data, since the
feature AD of replaced benign data is small. Feature AD of poison
data is computed as

𝛼

𝑁

∑︁
(𝑥 ′

𝑖
,𝑦′

𝑖
)
𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥 ′𝑖 , 𝑦

′
𝑖 )

where (𝑥 ′
𝑖
, 𝑦′

𝑖
) is poison data. Since we bound the feature distance

with 𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥 ′𝑖 , 𝑦
′
𝑖
) ≤ Δ𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 , we have

𝛼

𝑁

∑︁
(𝑥 ′

𝑖
,𝑦′

𝑖
)
𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥 ′𝑖 , 𝑦

′
𝑖 ) ≤

𝛼

𝑁
· Δ𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 ·𝑚.

As we define 𝜌 = 𝑚
𝑁
, the change in feature AD is estimated by

𝛼 · 𝜌 · Δ𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 .
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We then study the change in structure AD, where we exam-
ine both intra-concept: within the poisoned concept 𝑝 , and inter-
concepts: between 𝑝 and the target concept 𝑡 .

Within concept 𝑝 , the structure change occurs between the poi-
son data and the remaining benign data. We assume that the struc-
ture AD among the poison data is similar to the structure AD among
the replaced benign data because both are image embeddings of one
single concept. Therefore, denoting poison data as (𝑥 ′

𝑖
, 𝑦′

𝑖
), replaced

benign data as (𝑥𝑖 , 𝑦𝑖 ), and remaining benign data in concept 𝑝 as
(𝑥𝑘 , 𝑦𝑘 ), the change in intra-concept structure AD is estimated by

2(1 − 𝛼)
𝑁 2

( ∑︁
(𝑥 ′

𝑖
,𝑦′

𝑖
),(𝑥𝑘 ,𝑦𝑘 )

��𝐷𝑖𝑚𝑔 (𝑥 ′𝑖 , 𝑥𝑘 ) − 𝐷𝑡𝑥𝑡 (𝑦′𝑖 , 𝑦𝑘 )
��

−
∑︁

(𝑥𝑖 ,𝑦𝑖 ),(𝑥𝑘 ,𝑦𝑘 )

��𝐷𝑖𝑚𝑔 (𝑥𝑖 , 𝑥𝑘 ) − 𝐷𝑡𝑥𝑡 (𝑦𝑖 , 𝑦𝑘 )
��)

=
2(1 − 𝛼)

𝑁 2

∑︁
𝑖,(𝑥𝑘 ,𝑦𝑘 )

(��𝐷𝑖𝑚𝑔 (𝑥 ′𝑖 , 𝑥𝑘 ) − 𝐷𝑡𝑥𝑡 (𝑦′𝑖 , 𝑦𝑘 )
��

−
��𝐷𝑖𝑚𝑔 (𝑥𝑖 , 𝑥𝑘 ) − 𝐷𝑡𝑥𝑡 (𝑦𝑖 , 𝑦𝑘 )

��) .
Note that the coefficient 2 comes from symmetry in structure AD
computation. Since we bound the change of structure distance
introduced by any poison data by Δ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 , we have the change
in structure AD upper-bounded by

2(1 − 𝛼)
𝑁 2 ·𝑚 · (𝑛𝑝 −𝑚) · Δ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒

=2(1 − 𝛼) · 𝜌 · (
𝑛𝑝

𝑁
− 𝜌) · Δ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 .

Finally, we study the inter-concept structure change between
𝑝 and 𝑡 . By replacing𝑚 data in 𝑝 , the change in structure AD is
similar to intra-concept change. For (𝑥𝑘 , 𝑦𝑘 ) in the target concept
𝑡 , the change in structure AD is

2(1 − 𝛼)
𝑁 2

∑︁
𝑖,(𝑥𝑘 ,𝑦𝑘 )

(��𝐷𝑖𝑚𝑔 (𝑥 ′𝑖 , 𝑥𝑘 ) − 𝐷𝑡𝑥𝑡 (𝑦′𝑖 , 𝑦𝑘 )
��

−
��𝐷𝑖𝑚𝑔 (𝑥𝑖 , 𝑥𝑘 ) − 𝐷𝑡𝑥𝑡 (𝑦𝑖 , 𝑦𝑘 )

��) .
Here we would like to upper bound the change in AD, so we assume
the target class is not poisoned. Then we have

2(1 − 𝛼) · 𝜌 · 𝑛𝑡
𝑁

· Δ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 .

Assuming that the concepts are well-separated and that the
poison data interacts with other concepts similarly to the replaced
data, we can estimate the change in AD by

𝛼 · 𝜌 · Δ𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 + 2(1 − 𝛼) · 𝜌 · (
𝑛𝑝

𝑁
− 𝜌) · Δ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒+

2(1 − 𝛼) · 𝜌 · 𝑛𝑡
𝑁

· Δ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒

=𝛼 · 𝜌 · Δ𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 + 2(1 − 𝛼) · 𝜌 · (
𝑛𝑝 + 𝑛𝑡

𝑁
− 𝜌) · Δ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒

This concludes our computation for Equation 3.

8.4 Proof of Theorem 4.2
Here we prove Theorem 4.2 by showing that AD increases with
the number of poisoned concepts. Consider the case where there
are 𝑁 total benign training data across 𝐶 concepts. Without loss of
generality, we assume all concepts have the same amount of benign
training data 𝑛 where 𝑛 = 𝑁

𝐶
.

When poisoning the dataset, we choose 𝑀 concepts to poison
and replace𝑚 of its benign data with poison data where𝑚 < 𝑛.
Then a poisoned concept has 𝑛 −𝑚 benign data and𝑚 poison data.
For each poisoned concept, its poison data has textual embedding
belonging to the poisoned concept but visual embedding from a
target concept that is different from the poisoned concept. We also
assume all poisoned concepts have different target concepts.

To compute AD, we need to define the distance metric in our
analysis. For simplicity, we consider a binary distance metric, as
detailed below. For the distance between image embeddings and
text embedding, we have

𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥𝑖 , 𝑦𝑖 ) =
{
0 (𝑥𝑖 , 𝑦𝑖 ) is benign data
1 (𝑥𝑖 , 𝑦𝑖 ) is poison data.

Note that this binary metric 𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 is analogous to setting a
threshold for the distance (e.g. cosine distance between 𝑥𝑖 and 𝑦𝑖 )
to differentiate benign and poison data. Similarly, for 𝐷𝑖𝑚𝑔 (𝑥𝑖 , 𝑥𝑘 )
and 𝐷𝑡𝑥𝑡 (𝑦𝑖 , 𝑦𝑘 ), we have

𝐷𝑖𝑚𝑔 (𝑥𝑖 , 𝑥𝑘 ) =
{
0 𝑥𝑖 and 𝑥𝑘 are from the same concept
1 otherwise;

𝐷𝑡𝑥𝑡 (𝑦𝑖 , 𝑦𝑘 ) =
{
0 𝑦𝑖 and 𝑦𝑘 are from the same concept
1 otherwise.

In this setting, we assume well-separated textual and visual data
for the concepts.

We now compute the AD. Under this definition, the benign
dataset has𝐴𝐷 = 0 because𝐷𝑖𝑚𝑔:𝑡𝑥𝑡 (𝑥𝑖 , 𝑦𝑖 ) = 0 for any data (𝑥𝑖 , 𝑦𝑖 )
and 𝐷𝑖𝑚𝑔 (𝑥𝑖 , 𝑥𝑘 ) = 𝐷𝑡𝑥𝑡 (𝑦𝑖 , 𝑦𝑘 ) for any two data (𝑥𝑖 , 𝑦𝑖 ), (𝑥𝑘 , 𝑦𝑘 ).
With the poisoned dataset, feature AD increases to 𝛼 ·𝑚 ·𝐶𝑃

𝑁
, because

any pair of poison (𝑥𝑖 , 𝑦𝑖 ) contributes distance 1 to feature AD, but
none of the benign data does so.

To see the increase in structure AD, we break it into two parts:
intra-concept: within each poisoned concept, and inter-concepts:
between poisoned concept and its target concept.

Within each poisoned concept, 𝐷𝑡𝑥𝑡 (𝑦𝑖 , 𝑦𝑘 ) = 0 for any two tex-
tual embeddings because they all belong to this concept. However,
poison data introduces non-zero 𝐷𝑖𝑚𝑔 (𝑥𝑖 , 𝑥𝑘 ) with benign data. In
this case, with 𝑚 poison images and 𝑛 −𝑚 benign images, each
poisoned concept increases the structure AD by 2(1−𝛼 ) ·𝑚 · (𝑛−𝑚)

𝑁 2 .
Note that a coefficient of 2 comes from the symmetry of pairing two
data, which counts |𝐷𝑖𝑚𝑔 (𝑥𝑖 , 𝑥𝑘 ) −𝐷𝑡𝑥𝑡 (𝑦𝑖 , 𝑦𝑘 ) | twice for a unique
pair of (𝑖, 𝑘).

The structure AD also increases between a poisoned concept
and its target concept. Poison data introduces entanglement that
connects two separate concepts. The poison data comes from some
target concept and thus has visual connections to the target concept.
However, there is no textual connection. If the target concept is
also poisoned, the structure AD has an increase of 2(1−𝛼 ) ·𝑚 · (𝑛−𝑚)

𝑁 2

for each poisoned concept because there exists 𝑛 benign data of the
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Figure 11: Generated images and corresponding cross-
attention maps from benign and poisoned models when fine-
tuning SD2.1. “Blouse” and “lion” are clean concepts, while
“woman” and “hat” are poisoned.

Figure 12: Generated images from benign and poisoned mod-
els when fine-tuning SDXL. “Lemon” and “candle” are clean
concepts, while “tree” and “house” are poisoned.

target concept. Otherwise, i.e., the target concept is not poisoned,
the increase is 2(1−𝛼 ) ·𝑚 ·𝑛

𝑁 2 .
Therefore, AD of the poisoned dataset is lower-bounded by

𝛼 ·𝑚 ·𝐶𝑃

𝑁
+
(
2(1 − 𝛼) ·𝑚 · (𝑛 −𝑚)

𝑁 2 + 2(1 − 𝛼) ·𝑚 · (𝑛 −𝑚)
𝑁 2

)
·𝐶𝑃 .

(5)
Since 𝑚 < 𝑛, we prove that AD increases with the number of
poisoned concepts 𝐶𝑃 .

8.5 Additional Results of Section 5
Here we show example images generated from models fine-tuned
on SD2.1 and their cross-attention maps in Figure 11. SD2.1models
are more fragile and implode faster. The generated images lose
focus on the concepts and become blurry as more poison data is
injected during fine-tuning. We also show generated images from
fine-tuning SDXL in Figure 12, observing degradation in model
performance as we increase 𝐶𝑃 .
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